login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055585
Second column of triangle A055584.
6
1, 6, 25, 88, 280, 832, 2352, 6400, 16896, 43520, 109824, 272384, 665600, 1605632, 3829760, 9043968, 21168128, 49152000, 113311744, 259522560, 590872576, 1337982976, 3014656000, 6761218048, 15099494400, 33587986432, 74440507392
OFFSET
0,2
COMMENTS
Number of 132-avoiding permutations of [n+5] containing exactly three 123 patterns. - Emeric Deutsch, Jul 13 2001
If X_1,X_2,...,X_n are 2-blocks of a (2n+2)-set X then, for n>=1, a(n-1) is the number of (n+3)-subsets of X intersecting each X_i, (i=1,2,...,n). - Milan Janjic, Nov 18 2007
Convolution of A001792 with itself. - Philippe Deléham, Feb 21 2013
LINKS
Pudwell, Lara; Scholten, Connor; Schrock, Tyler; Serrato, Alexa Noncontiguous pattern containment in binary trees, ISRN Comb. 2014, Article ID 316535, 8 p. (2014), Section 5.2.
A. Robertson, H. S. Wilf and D. Zeilberger, Permutation patterns and continued fractions, Electr. J. Combin. 6, 1999, #R38.
FORMULA
G.f.: (1-x)^2/(1-2*x)^4.
a(n) = A055584(n+1, 1). a(n) = sum(a(j), j=0..n-1)+A001793(n+1), n >= 1.
a(n) = 2^(n-3)(n+1)(n+3)(n+8)/3.
Preceded by 0, this is the binomial transform of the tetrahedral numbers A000292. - Carl Najafi, Sep 08 2011
E.g.f.: (1/6)*(2*x^3 + 15*x^2 + 24*x + 6)*exp(2*x). - G. C. Greubel, Aug 22 2015
EXAMPLE
a(1)=6 because 432516,432561,435126,452136,532146 and 632145 are the only 132-avoiding permutations of 123456, containing exactly three increasing subsequences of length 3.
MATHEMATICA
Table[(1/3)*2^(n-3)*(n+1)*(n+3)*(n+8), {n, 0, 50}] (* G. C. Greubel, Aug 22 2015 *)
LinearRecurrence[{8, -24, 32, -16}, {1, 6, 25, 88}, 30] (* Harvey P. Dale, Nov 03 2017 *)
PROG
(PARI) Vec(((1-x)^2)/(1-2*x)^4 + O(x^30)) \\ Michel Marcus, Aug 22 2015
CROSSREFS
Cf. A055584, partial sums of A049612, n >= 1.
Sequence in context: A233698 A230723 A220275 * A099625 A209243 A143628
KEYWORD
easy,nonn
AUTHOR
Wolfdieter Lang, May 26 2000
STATUS
approved