login
A049612
a(n) = T(n,3), array T as in A049600.
11
0, 1, 5, 19, 63, 192, 552, 1520, 4048, 10496, 26624, 66304, 162560, 393216, 940032, 2224128, 5214208, 12124160, 27983872, 64159744, 146210816, 331350016, 747110400, 1676673024, 3746562048, 8338276352, 18488492032
OFFSET
0,3
COMMENTS
If X_1, X_2, ..., X_n are 2-blocks of a (2n+3)-set X then, for n >= 1, a(n+1) is the number of (n+3)-subsets of X intersecting each X_i, (i=1,2,...,n). - Milan Janjic, Nov 18 2007
REFERENCES
Robert Cori, Gabor Hetyei, Genus one partitions, in 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), 2014, Chicago, United States. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AT, pp. 333-344, <hal-01207612>
LINKS
R. Cori and G. Hetyei, Counting genus one partitions and permutations, arXiv preprint arXiv:1306.4628 [math.CO], 2013.
R. Cori and G. Hetyei, How to count genus one partitions, FPSAC 2014, Chicago, Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France, 2014, 333-344.
S. Kitaev and J. Remmel, p-Ascent Sequences, arXiv preprint arXiv:1503.00914 [math.CO], 2015.
Sergey Kitaev and Jeffrey Remmel, A note on p-ascent sequences, preprint, 2016.
FORMULA
G.f.: x*(1-x)^3 /(1-2*x)^4.
a(n) = Sum_{k=0..floor((n+3)/2)} C(n+3, 2k)*C(k+1, 3). - Paul Barry, May 15 2003
a(n+1) = 2^n*n^3/48 + 5*2^n*n^2/16 + 7*2^n*n/6 + 2^n, n>=1. - Milan Janjic, Nov 18 2007
Binomial transform of the tetrahedral numbers A000292 when omitting the initial 0 in both sequences. - Carl Najafi, Sep 08 2011
MATHEMATICA
CoefficientList[Series[x (1-x)^3/(1-2x)^4, {x, 0, 30}], x] (* or *) Join[ {0}, LinearRecurrence[{8, -24, 32, -16}, {1, 5, 19, 63}, 30]] (* Harvey P. Dale, Jan 07 2014 *)
CROSSREFS
Cf. A049600.
Row sums of triangle A055252. a(n+1) = A055584(n, 0), n >= 0.
Sequence in context: A036677 A003296 A053545 * A377659 A211842 A304134
KEYWORD
nonn
STATUS
approved