login
A049610
a(n) = Sum_{k=0..floor(n/2)} k*binomial(n,2*k) = floor(n*2^(n-3)).
5
0, 0, 1, 3, 8, 20, 48, 112, 256, 576, 1280, 2816, 6144, 13312, 28672, 61440, 131072, 278528, 589824, 1245184, 2621440, 5505024, 11534336, 24117248, 50331648, 104857600, 218103808, 452984832, 939524096, 1946157056, 4026531840, 8321499136, 17179869184, 35433480192
OFFSET
0,4
COMMENTS
Essentially same as A001792, except for leading zeros, which motivate the existence of this sequence on its own.
LINKS
Silvana Ramaj, New Results on Cyclic Compositions and Multicompositions, Master's Thesis, Georgia Southern Univ., 2021. See p. 67.
FORMULA
G.f. x^2*(1-x)/(1-2*x)^2. - Sergei N. Gladkovskii, Oct 18 2012
G.f.: x^2*( 1 + 2*x*U(0) ) where U(k) = 1 + (k+1)/(2 - 8*x/(4*x + (k+1)/U(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Oct 19 2012
E.g.f.: x*(exp(2*x) - 1)/4. - Stefano Spezia, Feb 02 2023
Sum_{n>=2} 1/a(n) = 8*log(2) - 4. - Amiram Eldar, Feb 14 2023
MATHEMATICA
CoefficientList[Series[x^2*(1 - x)/(1 - 2*x)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Jan 09 2013 *)
PROG
(PARI) a(n)=n<<(n-3)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
M. F. Hasler, Jan 25 2012
STATUS
approved