login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A132894
Number of (1,0) steps in all paths of length n with steps U=(1,1), D=(1,-1) and H=(1,0), starting at (0,0), staying weakly above the x-axis (i.e., in all length-n left factors of Motzkin paths).
11
0, 1, 4, 15, 52, 175, 576, 1869, 6000, 19107, 60460, 190333, 596652, 1863745, 5804176, 18028755, 55873872, 172818243, 533589660, 1644921789, 5063762220, 15568666029, 47811348816, 146675181975, 449538774048, 1376564658525
OFFSET
0,3
COMMENTS
Number of peaks (i.e., UDs) in all paths of length n+1 with steps U=(1,1), D=(1,-1) and H=(1,0), starting at (0,0), staying weakly above the x-axis (i.e., in all length n+1 left factors of Motzkin paths). Example: a(2)=4 because in the 13 (=A005773(4)) length-3 left factors of Motzkin paths, namely HHH, HHU, H(UD), HUH, HUU, (UD)H, (UD)U, UHD, UHH, UHU, U(UD), UUH and UUU, we have altogether 4 peaks (shown between parentheses).
This could be called the Motzkin transform of A077043 because the substitution x -> x*A001006(x) in the independent variable of the g.f. of A077043 yields the g.f. of this sequence here. - R. J. Mathar, Nov 10 2008
LINKS
A. Asinowski and G. Rote, Point sets with many non-crossing matchings, arXiv preprint arXiv:1502.04925 [cs.CG], 2015.
Luca Ferrari and Emanuele Munarini, Enumeration of edges in some lattices of paths, arXiv preprint arXiv:1203.6792, 2012; and also, J. Int. Seq. 17 (2014) #14.1.5.
Mark Shattuck, Subword Patterns in Smooth Words, Enum. Comb. Appl. (2024) Vol. 4, No. 4, Art. No. S2R32. See p. 6.
FORMULA
a(n) = Sum_{k=0..n} k*A107230(n,k).
a(n) = Sum_{k=0..floor((n+1)/2)} k*A132893(n+1,k).
a(n) = Sum_{k=0..n} k*C(n,k)*C(n-k, floor((n-k)/2)).
G.f.: z/((1-3*z)*sqrt(1-2*z-3*z^2)).
a(n) = Sum_{k=0..n} k*C(n,k)*C(2*k,k)*(-1)^(n-k). - Wadim Zudilin, Oct 11 2010
E.g.f.: exp(x)*x*(BesselI(0, 2*x) + BesselI(1, 2*x)). - Peter Luschny, Aug 25 2012
a(n) = 2*n/(n-1)*a(n-1) + 3*a(n-2) for n>=2, a(n) = n for n<2. a(n) = n*A005773(n). - Alois P. Heinz, Jul 15 2013
a(n) ~ 3^(n-1/2)*sqrt(n/Pi). - Vaclav Kotesovec, Oct 08 2013
a(n) = (-1)^(n+1)*JacobiP(n-1,1,-n+1/2,-7). - Peter Luschny, Sep 23 2014
EXAMPLE
a(2) = 4 because in the 5 (=A005773(3)) length-2 left factors of Motzkin paths, namely HH, HU, UD, UH and UU, we have altogether 4 H steps.
G.f. = x + 4*x^2 + 15*x^3 + 52*x^4 + 175*x^5 + 576*x^6 + 1869*x^7 + 6000*x^8 + ...
MAPLE
a := n -> add(k*binomial(n, k)*binomial(n-k, floor((n-k)/2)), k=0..n): seq(a(n), n=0..25);
# second Maple program:
a:= proc(n) a(n):=`if`(n<2, n, 2*n/(n-1)*a(n-1)+3*a(n-2)) end:
seq(a(n), n=0..40); # Alois P. Heinz, Jul 15 2013
MATHEMATICA
a[n_] := n*Hypergeometric2F1[3/2, 1-n, 2, 4]; Table[ a[n] // Abs, {n, 0, 25}] (* Jean-François Alcover, Jul 10 2013 *)
a[ n_] := If[ n < 0, 0, -(-1)^n n Hypergeometric2F1[ 3/2, 1 - n, 2, 4]]; (* Michael Somos, Aug 06 2014 *)
PROG
(Sage)
A132894 = lambda n: (-1)^(n+1)*jacobi_P(n-1, 1, -n+1/2, -7)
[Integer(A132894(n).n(40), 16) for n in range(26)] # Peter Luschny, Sep 23 2014
CROSSREFS
Column k=1 of A328347.
Sequence in context: A291011 A137213 A027853 * A117917 A369671 A192431
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Oct 07 2007
STATUS
approved