The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A192431 Coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments. 2
 0, 1, 4, 15, 52, 185, 648, 2287, 8040, 28321, 99660, 350879, 1235036, 4347705, 15304208, 53873695, 189642192, 667570433, 2349942420, 8272149359, 29119170180, 102503781241, 360828342424, 1270168882575, 4471181087032, 15739215003425 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The polynomial p(n,x) is defined by (u^n+v^n)//2)^n+(u^n-v^n)/(2d), where u=x+d, v=x-d, d=sqrt(x^2+2). For an introduction to reductions of polynomials by substitutions such as x^2->x+2, see A192232. LINKS FORMULA Conjectures from Colin Barker, Jun 07 2019: (Start) G.f.: x*(1 + x)^2 / (1 - 2*x - 6*x^2 + 2*x^3 + x^4). a(n) = 2*a(n-1) + 6*a(n-2) - 2*a(n-3) - a(n-4) for n>3. (End) EXAMPLE The first five polynomials p(n,x) and their reductions are as follows: p(0,x)=1 -> 1 p(1,x)=1+x -> 1+x p(2,x)=2+3x+x^2 -> 3+4x p(3,x)=2+7x+6x^2+x^3 -> 9+15x p(4,x)=4+12x+17x^2+10x^3+x^4 -> 33+52x. From these, read A192430=(1,1,3,9,33,...) and A192431=(0,1,4,15,52,...) MATHEMATICA (See A192430.) CROSSREFS Cf. A192232, A192430. Sequence in context: A027853 A132894 A117917 * A329253 A161125 A027295 Adjacent sequences: A192428 A192429 A192430 * A192432 A192433 A192434 KEYWORD nonn AUTHOR Clark Kimberling, Jun 30 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 24 04:28 EDT 2023. Contains 361454 sequences. (Running on oeis4.)