OFFSET
0,3
COMMENTS
The polynomial p(n,x) is defined by (u^n+v^n)//2)^n+(u^n-v^n)/(2d), where u=x+d, v=x-d, d=sqrt(x^2+2). For an introduction to reductions of polynomials by substitutions such as x^2->x+2, see A192232.
FORMULA
Conjecture: a(n) = 2*a(n-1)+6*a(n-2)-2*a(n-3)-a(n-4). G.f.: -(x^3+5*x^2+x-1) / (x^4+2*x^3-6*x^2-2*x+1). - Colin Barker, May 12 2014
EXAMPLE
MATHEMATICA
q[x_] := x + 1; d = Sqrt[x + 2];
u[x_] := x + d; v[x_] := x - d;
p[n_, x_] := (u[x]^n + v[x]^n)/2 + (u[x]^n - v[x]^n)/(2 d) (* A163762 *)
Table[Expand[p[n, x]], {n, 0, 6}]
reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)};
t = Table[FixedPoint[Expand[#1 /. reductionRules] &, p[n, x]], {n, 0, 30}]
Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}] (* A192430 *)
Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}] (* A192431 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jun 30 2011
STATUS
approved