login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192427
Coefficient of x in the reduction by x^2 -> x+1 of the polynomial p(n,x) defined below in Comments.
2
0, 1, 1, 8, 11, 45, 80, 251, 517, 1432, 3195, 8317, 19360, 48827, 116213, 288360, 694331, 1708397, 4138480, 10138363, 24636645, 60217912, 146570491, 357833309, 871703360, 2126857275, 5183425493, 12642971912, 30819571387, 75160150861
OFFSET
0,4
COMMENTS
The polynomial p(n,x) is defined by ((x+d)/2)^n + ((x-d)/2)^n, where d = sqrt(x^2+8). For an introduction to reductions of polynomials by substitutions such as x^2 -> x+1, see A192232.
FORMULA
From Colin Barker, May 12 2014: (Start)
a(n) = a(n-1) + 5*a(n-2) - 2*a(n-3) - 4*a(n-4).
G.f.: x*(1+2*x^2)/(1-x-5*x^2+2*x^3+4*x^4). (End)
a(n) = Sum_{k=0..n} T(n, k)*Fibonacci(k), where T(n, k) = [x^k] ((x + sqrt(x^2+8))^n + (x - sqrt(x^2+8))^n)/2^n. - G. C. Greubel, Jul 13 2023
EXAMPLE
The first five polynomials p(n,x) and their reductions are as follows:
p(0,x) = 2 -> 2
p(1,x) = x -> x
p(2,x) = 4 + x^2 -> 5 + x
p(3,x) = 6*x + x^3 -> 1 + 8*x
p(4,x) = 8 + 8*x^2 + x^4 -> 18 + 11*x.
From these, read A192426 = (2, 0, 5, 1, 18, ...) and a(n) = (0, 1, 1, 8, 11, ...).
MATHEMATICA
(See A192426.)
LinearRecurrence[{1, 5, -2, -4}, {0, 1, 1, 8}, 40] (* G. C. Greubel, Jul 13 2023 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x*(1+2*x^2)/(1-x-5*x^2+2*x^3+4*x^4) )); // G. C. Greubel, Jul 13 2023
(SageMath)
@CachedFunction
def a(n): # a = A192427
if (n<4): return (0, 1, 1, 8)[n]
else: return a(n-1) + 5*a(n-2) - 2*a(n-3) - 4*a(n-4)
[a(n) for n in range(41)] # G. C. Greubel, Jul 13 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 30 2011
EXTENSIONS
Typo in name corrected by G. C. Greubel, Jul 13 2023
STATUS
approved