OFFSET
0,3
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,10,-6,-9).
FORMULA
From Colin Barker, May 12 2014: (Start)
a(n) = 2*a(n-1) + 10*a(n-2) - 6*a(n-3) - 9*a(n-4).
G.f.: (1-x-7*x^2-3*x^3)/(1-2*x-10*x^2+6*x^3+9*x^4). (End)
a(n) = Sum_{k=0..n} T(n,k)*Fibonacci(k-1), where T(n, k) = [x^k] ( ((x + sqrt(x+4))^n + (x - sqrt(x+4))^n)/2 + ((x + sqrt(x+4))^n - (x - sqrt(x+4))^n)/(2*sqrt(x+4)) ). - G. C. Greubel, Jul 13 2023
EXAMPLE
The first five polynomials p(n,x) and their reductions are as follows:
p(0,x) = 1 -> 1
p(1,x) = 1 + x -> 1 + x
p(2,x) = 4 + 3*x + x^2 -> 5 + 4*x
p(3,x) = 4 + 13*x + 6*x^2 + x^3 -> 11 + 21*x
p(4,x) = 16 + 24*x + 29*x^2 + 10*x^3 + x^4 -> 57 + 76*x.
From these, read a(n) = (1, 1, 5, 11, 57, 185, ...) and A192429 = (0, 1, 4, 21, 76, 329, ...).
MATHEMATICA
q[x_]:= x+1; d= Sqrt[x+4];
u[x_]:= x+d; v[x_]:= x-d;
p[n_, x_]:= (u[x]^n +v[x]^n)/2 + (u[x]^n -v[x]^n)/(2*d) (* A163762 *)
Table[Expand[p[n, x]], {n, 0, 6}]
reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)};
t = Table[FixedPoint[Expand[#1 /. reductionRules] &, p[n, x]], {n, 0, 30}]
Table[Coefficient[Part[t, n], x, 0], {n, 30}] (* A192428 *)
Table[Coefficient[Part[t, n], x, 1], {n, 30}] (* A192429 *)
LinearRecurrence[{2, 10, -6, -9}, {1, 1, 5, 11}, 40] (* G. C. Greubel, Jul 13 2023 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x-7*x^2-3*x^3)/(1-2*x-10*x^2+6*x^3+9*x^4) )); // G. C. Greubel, Jul 13 2023
(SageMath)
@CachedFunction
def a(n): # a = A192428
if (n<4): return (1, 1, 5, 11)[n]
else: return 2*a(n-1) + 10*a(n-2) - 6*a(n-3) - 9*a(n-4)
[a(n) for n in range(41)] # G. C. Greubel, Jul 13 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jun 30 2011
STATUS
approved