login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A070198
Smallest nonnegative number m such that m == i (mod i+1) for all 1 <= i <= n.
9
0, 1, 5, 11, 59, 59, 419, 839, 2519, 2519, 27719, 27719, 360359, 360359, 360359, 720719, 12252239, 12252239, 232792559, 232792559, 232792559, 232792559, 5354228879, 5354228879, 26771144399, 26771144399, 80313433199, 80313433199
OFFSET
0,3
COMMENTS
Also, smallest k such that, for 0 <= i < n, i+1 divides k-i.
Suggested by Chinese Remainder Theorem. This sequence can generate others: smallest b(n) such that b(n) == i (mod (i+2)), 1 <= i <= n, gives b(1)=1 and b(n) = a(n+1)-1 for n > 1; smallest c(n) such that c(n) == i (mod (i+3)), 1 <= i <= n, gives c(1)=1, c(2)=17 and c(n) = a(n+2) - 2 for n > 2; smallest d(n) such that c(n) == i (mod (i+4)), 1 <= i <= n, gives d(1)=1, d(2)=26, d(3)=206 and d(n) = a(n+3) - 3 for n > 3, etc.
A208768(n) occurs A057820(n) times. - Reinhard Zumkeller, Mar 01 2012
From Kival Ngaokrajang, Oct 10 2013: (Start)
A070198(n-1) is m such that max(Sum_{i=1..n} m (mod i)) = A000217(n-1).
Example for n = 3:
m\i = 1 2 3 sum
1 0 1 1 2
2 0 0 2 2
3 0 1 0 1
4 0 0 1 1
5 0 1 2 3 <--max remainder sum = 3 = A000217(2)
6 0 0 0 0 first occurs at m = 5 = A070198(2)
(End)
FORMULA
a(n) = lcm(1, 2, 3, ..., n+1) - 1 = A003418(n+1) - 1.
EXAMPLE
a(3) = 11 because 11 == 1 (mod 2), 11 == 2 (mod 3) and 11 == 3 (mod 4).
MAPLE
seq(ilcm($1..n) - 1, n=1..100); # Robert Israel, Nov 03 2014
MATHEMATICA
f[n_] := ChineseRemainder[ Range[0, n - 1], Range[n]]; Array[f, 28] (* or *)
f[n_] := LCM @@ Range@ n - 1; Array[f, 28] (* Robert G. Wilson v, Oct 30 2014 *)
PROG
(Haskell)
a070198 n = a070198_list !! n
a070198_list = map (subtract 1) $ scanl lcm 1 [2..]
-- Reinhard Zumkeller, Mar 01 2012
(Magma) [Exponent(SymmetricGroup(n))-1 : n in [1..30]]; /* Vincenzo Librandi, Oct 31 2014 - after Arkadiusz Wesolowski in A003418 */
(Python)
from math import lcm
def A070198(n): return lcm(*range(1, n+2))-1 # Chai Wah Wu, May 02 2023
CROSSREFS
Cf. A057825 (indices of primes). - R. J. Mathar, Jan 14 2009
Cf. A116151. - Zak Seidov, Mar 11 2014
Sequence in context: A192428 A060358 A091798 * A121934 A153812 A269454
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, May 06 2002
EXTENSIONS
Edited by N. J. A. Sloane, Nov 18 2007, at the suggestion of Max Alekseyev
STATUS
approved