The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A192434 Smallest prime p such that there is a gap of exactly n! between p and the next prime. 0
2, 2, 3, 23, 1669, 1895359, 111113196467011 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
a(7) > 1.5 * 10^18. - Charles R Greathouse IV, Jun 30 2011
a(7) <=
5321252506668526413269161812412779312234715413010708809313699883082142158368298199 (see the Nicely page). - Abhiram R Devesh, Aug 09 2014
LINKS
Thomas R. Nicely, First occurrence prime gaps [For local copy see A000101]
FORMULA
a(n) = A000230(n!/2) for n > 1. - Charles R Greathouse IV, Jun 30 2011
EXAMPLE
a(4) = 1669 because the next prime after 1669 is 1693 and 1693 - 1669 = 24 = 4!
MAPLE
with(numtheory):for n from 0 to 10 do:id:=0:for k from 1 to 2000000 while(id=0) do:p1:=ithprime(k):p2:=ithprime(k+1):if p2-p1 = n! then id:=1: printf(`%d, `, p1): else fi:od:od:
MATHEMATICA
f[n_] := Block[{k = 1}, While[Prime[k + 1] != n + Prime[k], k++ ]; Prime[k]]; Do[ Print[ f[n!]], {n, 0, 10}]
PROG
(PARI) a(n)=my(p=2); n=n!; forprime(q=3, default(primelimit), if(q-p==n, return(p)); p=q) \\ Charles R Greathouse IV, Jun 30 2011
(Python)
import sympy
n=0
while n>=0:
....p=2
....while sympy.nextprime(p)-p!=(sympy.factorial(n)):
........p=sympy.nextprime(p)
....print(p)
....n=n+1
....p=sympy.nextprime(p)
## Abhiram R Devesh, Aug 09 2014
CROSSREFS
Sequence in context: A087768 A113604 A084745 * A189254 A036503 A109590
KEYWORD
nonn,hard
AUTHOR
Michel Lagneau, Jun 30 2011
EXTENSIONS
a(6) from Charles R Greathouse IV, Jun 30 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 12:54 EDT 2024. Contains 372913 sequences. (Running on oeis4.)