The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A192434 Smallest prime p such that there is a gap of exactly n! between p and the next prime. 0
 2, 2, 3, 23, 1669, 1895359, 111113196467011 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS a(7) > 1.5 * 10^18. - Charles R Greathouse IV, Jun 30 2011 a(7) <= 5321252506668526413269161812412779312234715413010708809313699883082142158368298199 (see the Nicely page). - Abhiram R Devesh, Aug 09 2014 LINKS Table of n, a(n) for n=0..6. Thomas R. Nicely, First occurrence prime gaps [For local copy see A000101] FORMULA a(n) = A000230(n!/2) for n > 1. - Charles R Greathouse IV, Jun 30 2011 EXAMPLE a(4) = 1669 because the next prime after 1669 is 1693 and 1693 - 1669 = 24 = 4! MAPLE with(numtheory):for n from 0 to 10 do:id:=0:for k from 1 to 2000000 while(id=0) do:p1:=ithprime(k):p2:=ithprime(k+1):if p2-p1 = n! then id:=1: printf(`%d, `, p1): else fi:od:od: MATHEMATICA f[n_] := Block[{k = 1}, While[Prime[k + 1] != n + Prime[k], k++ ]; Prime[k]]; Do[ Print[ f[n!]], {n, 0, 10}] PROG (PARI) a(n)=my(p=2); n=n!; forprime(q=3, default(primelimit), if(q-p==n, return(p)); p=q) \\ Charles R Greathouse IV, Jun 30 2011 (Python) import sympy n=0 while n>=0: ....p=2 ....while sympy.nextprime(p)-p!=(sympy.factorial(n)): ........p=sympy.nextprime(p) ....print(p) ....n=n+1 ....p=sympy.nextprime(p) ## Abhiram R Devesh, Aug 09 2014 CROSSREFS Sequence in context: A087768 A113604 A084745 * A189254 A036503 A109590 Adjacent sequences: A192431 A192432 A192433 * A192435 A192436 A192437 KEYWORD nonn,hard AUTHOR Michel Lagneau, Jun 30 2011 EXTENSIONS a(6) from Charles R Greathouse IV, Jun 30 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 12:54 EDT 2024. Contains 372913 sequences. (Running on oeis4.)