login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A109590 E.g.f.: 3x/(-1+1/(-1+1/(-1+log(1+3x)))) = -3x[2-log(1+3x)]/[3-2log(1+x)]. 0
0, -2, -2, -3, -24, 30, -1584, 18648, -417024, 9009792, -234809280, 6704112096, -213138355968, 7406611617600, -280001933761536, 11429619375628800, -501128794469154816, 23484526696292281344, -1171437744670467637248, 61965733479803762540544 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

C. Q. He and M. L. Lapidus, Generalized Minkowski content, spectrum of fractal drums, fractal strings and the Riemann zeta-function, Mem. Amer. Math. Soc. 127 (1997), no. 608, x+97 pp.

LINKS

Table of n, a(n) for n=0..19.

MAPLE

G:=3*x/(-1+1/(-1+1/(-1+log(1+3*x)))): Gser:=series(G, x=0, 24): 0, seq(n!*coeff(Gser, x^n), n=1..21); # yields the signed sequence

MATHEMATICA

g[x_] = x/(-1 + 1/(-1 + 1/(-1 + Log[1 + x]))) h[x_, n_] = Dt[g[x], {x, n}]; a[x_] = Table[h[x, n]*2^n, {n, 0, 25}]; b = a[0] Abs[b]

CROSSREFS

Sequence in context: A192434 A189254 A036503 * A074935 A320103 A212796

Adjacent sequences: A109587 A109588 A109589 * A109591 A109592 A109593

KEYWORD

sign

AUTHOR

Roger L. Bagula, Jun 29 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 28 05:03 EST 2023. Contains 359850 sequences. (Running on oeis4.)