login
A109590
E.g.f.: 3x/(-1+1/(-1+1/(-1+log(1+3x)))) = -3x[2-log(1+3x)]/[3-2log(1+x)].
0
0, -2, -2, -3, -24, 30, -1584, 18648, -417024, 9009792, -234809280, 6704112096, -213138355968, 7406611617600, -280001933761536, 11429619375628800, -501128794469154816, 23484526696292281344, -1171437744670467637248, 61965733479803762540544
OFFSET
0,2
REFERENCES
C. Q. He and M. L. Lapidus, Generalized Minkowski content, spectrum of fractal drums, fractal strings and the Riemann zeta-function, Mem. Amer. Math. Soc. 127 (1997), no. 608, x+97 pp.
MAPLE
G:=3*x/(-1+1/(-1+1/(-1+log(1+3*x)))): Gser:=series(G, x=0, 24): 0, seq(n!*coeff(Gser, x^n), n=1..21); # yields the signed sequence
MATHEMATICA
g[x_] = x/(-1 + 1/(-1 + 1/(-1 + Log[1 + x]))) h[x_, n_] = Dt[g[x], {x, n}]; a[x_] = Table[h[x, n]*2^n, {n, 0, 25}]; b = a[0] Abs[b]
CROSSREFS
Sequence in context: A192434 A189254 A036503 * A074935 A320103 A212796
KEYWORD
sign
AUTHOR
Roger L. Bagula, Jun 29 2005
STATUS
approved