The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A109590 E.g.f.: 3x/(-1+1/(-1+1/(-1+log(1+3x)))) = -3x[2-log(1+3x)]/[3-2log(1+x)]. 0
 0, -2, -2, -3, -24, 30, -1584, 18648, -417024, 9009792, -234809280, 6704112096, -213138355968, 7406611617600, -280001933761536, 11429619375628800, -501128794469154816, 23484526696292281344, -1171437744670467637248, 61965733479803762540544 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES C. Q. He and M. L. Lapidus, Generalized Minkowski content, spectrum of fractal drums, fractal strings and the Riemann zeta-function, Mem. Amer. Math. Soc. 127 (1997), no. 608, x+97 pp. LINKS MAPLE G:=3*x/(-1+1/(-1+1/(-1+log(1+3*x)))): Gser:=series(G, x=0, 24): 0, seq(n!*coeff(Gser, x^n), n=1..21); # yields the signed sequence MATHEMATICA g[x_] = x/(-1 + 1/(-1 + 1/(-1 + Log[1 + x]))) h[x_, n_] = Dt[g[x], {x, n}]; a[x_] = Table[h[x, n]*2^n, {n, 0, 25}]; b = a[0] Abs[b] CROSSREFS Sequence in context: A192434 A189254 A036503 * A074935 A320103 A212796 Adjacent sequences: A109587 A109588 A109589 * A109591 A109592 A109593 KEYWORD sign AUTHOR Roger L. Bagula, Jun 29 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 28 05:03 EST 2023. Contains 359850 sequences. (Running on oeis4.)