login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A109591 E.g.f.: 5x/(-1+1/(-1+1/(-1+1/(-1+log(1+5x))))) = -5x[3-2log(1+5x)]/[5-3log(1+5x)]. 0
0, -3, 2, 3, 56, -360, 12420, -303030, 10226880, -381416040, 16356484800, -781899663600, 41374146038400, -2397894225620400, 151087293619567200, -10281399143079546000, 751437976013183232000, -58702720576973120928000, 4881171236699697126048000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

C. Q. He and M. L. Lapidus, Generalized Minkowski content, spectrum of fractal drums, fractal strings and the Riemann zeta-function, Mem. Amer. Math. Soc. 127 (1997), no. 608, x+97 pp.

LINKS

Table of n, a(n) for n=0..18.

MAPLE

G:=5*x/(-1+1/(-1+1/(-1+1/(-1+log(1+5*x))))): Gser:=series(G, x=0, 21): 0, seq(n!*coeff(Gser, x^n), n=1..18); # yields the signed sequence

MATHEMATICA

g[x_] = FullSimplify[x/(-1 + 1/(-1 + 1/(-1 + 1/(-1 + Log[1 + x]))))] h[x_, n_] = Dt[g[x], {x, n}]; a[x_] = Table[h[x, n]*2^n, {n, 0, 25}]; b = a[0] Abs[b]

CROSSREFS

Sequence in context: A139170 A139075 A089750 * A143932 A304496 A195258

Adjacent sequences:  A109588 A109589 A109590 * A109592 A109593 A109594

KEYWORD

sign

AUTHOR

Roger L. Bagula, Jun 29 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 11:16 EDT 2022. Contains 353871 sequences. (Running on oeis4.)