The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A132892 Square array T(m,n) read by antidiagonals; T(m,n) is the number of equivalence classes in the set of sequences of n nonnegative integers that sum to m, generated by the equivalence relation defined in the following manner: we write a sequence in the form a[1]0a[2]0...0a[p], where each a[i] is a (possibly empty) sequence of positive integers; two sequences in this form, a[1]0a[2]0...0a[p] and b[1]0b[2]0...0b[q] are said to be equivalent if p=q and b[1],b[2],...,b[q] is a cyclic permutation of a[1],a[2],...a[p]. 0
 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 3, 1, 1, 5, 9, 7, 4, 1, 1, 6, 13, 14, 10, 4, 1, 1, 7, 19, 25, 22, 12, 5, 1, 1, 8, 25, 41, 42, 30, 15, 5, 1, 1, 9, 33, 63, 79, 66, 43, 19, 6, 1, 1, 10, 41, 92, 131, 132, 99, 55, 22, 6, 1, 1, 11, 51, 129, 213, 245, 217, 143, 73, 26, 7, 1, 1, 12, 61, 175 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS T(n,n) = A000108(n) (the Catalan numbers; see R. P. Stanley, Catalan addendum, problem starting "Equivalence classes of the equivalence relation ..."). T(m,m+1) = A007595(m+1); T(m,m+2) = A003441(m+1); T(m,m+3) = A003444(m+3); T(n+2,n) = A001453(n+1) (Catalan numbers - 1); T(m,1)=1; T(m,2)=m; T(m,3) = A080827(m) = A099392(m+1); T(m,4) = A004006(m). LINKS E. Deutsch and Ira Gessel, Equivalence Classes and Cyclic Arrangements:Problem 10525, Amer. Math. Monthly, 105, No. 8, 1998, 774-775 (published solution by D. Beckwith). R. P. Stanley, Catalan addendum. See the interpretation (www, "Vertices of height n-1 of the tree T ..."). FORMULA T(m,n) = Sum_{d | gcd(m,n+1)} (phi(n)*(C((m+n+1)/d-1, (n+1)/d-1) - C(m/d-1, (n+1)/d-1))/(n+1). EXAMPLE T(2,4) = 3 because we have {2000, 0200, 0020, 0002}, {1100, 0110, 0011} and {1010, 0101, 1001}. T(4,2) = 4 because we have {40, 04}, {31}, {13} and {22}. The square array starts: 1....1.....1.....1......1.....1.....1... 1....2.....3.....3......4.....4.....4... 1....3.....5.....7.....10....12....15... 1....4.....9....14.....22....30....43... 1....5....13....25.....42....66....99... MAPLE with(numtheory): T:=proc(m, n) local r, div, N: r:=igcd(m, n+1): div:=divisors(r): N:=nops(div): (sum(phi(div[j])*(binomial((m+n+1)/div[j]-1, (n+1)/div[j]-1) -binomial(m/div[j]-1, (n+1)/div[j]-1)), j=1..N))/(n+1) end proc: for m to 12 do seq(T(m, n), n=1..12) end do; # yields the upper left 12 by 12 block of the infinite matrix T(m, n) CROSSREFS Cf. A000108, A007595, A003441, A003444, A001453, A080827, A099392, A004006. Sequence in context: A107430 A330885 A255741 * A174448 A077028 A114225 Adjacent sequences:  A132889 A132890 A132891 * A132893 A132894 A132895 KEYWORD nonn,tabl AUTHOR Emeric Deutsch and Ira M. Gessel, Oct 02 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 21 04:10 EDT 2021. Contains 345354 sequences. (Running on oeis4.)