login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121438
Matrix inverse of triangle A122178, where A122178(n,k) = C( n*(n+1)/2 + n-k - 1, n-k) for n>=k>=0.
4
1, -1, 1, -3, -3, 1, -17, -3, -6, 1, -160, -25, 5, -10, 1, -2088, -285, -35, 30, -15, 1, -34307, -4179, -420, -91, 84, -21, 1, -675091, -74823, -6916, -497, -322, 182, -28, 1, -15428619, -1577763, -135639, -10080, -63, -1002, 342, -36, 1, -400928675, -38209725, -3082905, -215700, -14139, 2655, -2625
OFFSET
0,4
COMMENTS
A triangle having similar properties and complementary construction is the dual triangle A121434.
FORMULA
T(n,k) = [A121412^(-n*(n+1)/2)](n,k) for n>=k>=0; i.e., row n of A122178^-1 equals row n of matrix power A121412^(-n*(n+1)/2).
EXAMPLE
Triangle, A122178^-1, begins:
1;
-1, 1;
-3, -3, 1;
-17, -3, -6, 1;
-160, -25, 5, -10, 1;
-2088, -285, -35, 30, -15, 1;
-34307, -4179, -420, -91, 84, -21, 1;
-675091, -74823, -6916, -497, -322, 182, -28, 1;
-15428619, -1577763, -135639, -10080, -63, -1002, 342, -36, 1; ...
Triangle A121412 begins:
1;
1, 1;
3, 1, 1;
18, 4, 1, 1;
170, 30, 5, 1, 1; ...
Row 3 of A122178^-1 equals row 3 of A121412^(-6), which begins:
1;
-6, 1;
3, -6, 1;
-17, -3, -6, 1; ...
Row 4 of A122178^-1 equals row 4 of A121412^(-10), which begins:
1;
-10, 1;
25, -10, 1;
-15, 15, -10, 1;
-160, -25, 5, -10, 1; ...
PROG
(PARI) /* Matrix Inverse of A122178 */ {T(n, k)=local(M=matrix(n+1, n+1, r, c, if(r>=c, binomial(r*(r-1)/2+r-c-1, r-c)))); return((M^-1)[n+1, k+1])}
CROSSREFS
Cf. A122178 (matrix inverse); A121412; variants: A121439, A121440, A121441; A121434 (dual).
Sequence in context: A106210 A033842 A104417 * A108391 A111840 A174031
KEYWORD
sign,tabl
AUTHOR
Paul D. Hanna, Aug 29 2006
STATUS
approved