login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121440
Matrix inverse of triangle A121335, where A121335(n,k) = C( n*(n+1)/2 + n-k + 1, n-k) for n>=k>=0.
4
1, -3, 1, 0, -5, 1, -12, 4, -8, 1, -129, -22, 18, -12, 1, -1785, -238, -51, 51, -17, 1, -30291, -3634, -345, -161, 115, -23, 1, -608565, -66750, -6111, -285, -505, 225, -30, 1, -14112744, -1432296, -122227, -9177, 665, -1387, 399, -38, 1, -370746528, -35129022, -2818543, -196037, -14335, 4841, -3337, 658
OFFSET
0,2
COMMENTS
A triangle having similar properties and complementary construction is the dual triangle A121436.
FORMULA
T(n,k) = [A121412^(-n*(n+1)/2 - 2)](n,k) for n>=k>=0; i.e., row n of A121335^-1 equals row n of matrix power A121412^(-n*(n+1)/2 - 2).
EXAMPLE
Triangle, A121335^-1, begins:
1;
-3, 1;
0, -5, 1;
-12, 4, -8, 1;
-129, -22, 18, -12, 1;
-1785, -238, -51, 51, -17, 1;
-30291, -3634, -345, -161, 115, -23, 1;
-608565, -66750, -6111, -285, -505, 225, -30, 1;
-14112744, -1432296, -122227, -9177, 665, -1387, 399, -38, 1; ...
Triangle A121412 begins:
1;
1, 1;
3, 1, 1;
18, 4, 1, 1;
170, 30, 5, 1, 1; ...
Row 3 of A121335^-1 equals row 3 of A121412^(-8), which begins:
1;
-8, 1;
12, -8, 1;
-12, 4, -8, 1; ...
Row 4 of A121335^-1 equals row 4 of A121412^(-12), which begins:
1;
-12, 1;
42, -12, 1;
-34, 30, -12, 1;
-129, -22, 18, -12, 1; ...
PROG
(PARI) /* Matrix Inverse of A121335 */ {T(n, k)=local(M=matrix(n+1, n+1, r, c, if(r>=c, binomial(r*(r-1)/2+r-c+1, r-c)))); return((M^-1)[n+1, k+1])}
CROSSREFS
Cf. A121335 (matrix inverse); A121412; variants: A121438, A121439, A121441; A121436 (dual).
Sequence in context: A127626 A245095 A154791 * A348016 A353092 A362564
KEYWORD
sign,tabl
AUTHOR
Paul D. Hanna, Aug 29 2006
STATUS
approved