login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Matrix inverse of triangle A121335, where A121335(n,k) = C( n*(n+1)/2 + n-k + 1, n-k) for n>=k>=0.
4

%I #3 Mar 30 2012 18:36:58

%S 1,-3,1,0,-5,1,-12,4,-8,1,-129,-22,18,-12,1,-1785,-238,-51,51,-17,1,

%T -30291,-3634,-345,-161,115,-23,1,-608565,-66750,-6111,-285,-505,225,

%U -30,1,-14112744,-1432296,-122227,-9177,665,-1387,399,-38,1,-370746528,-35129022,-2818543,-196037,-14335,4841,-3337,658

%N Matrix inverse of triangle A121335, where A121335(n,k) = C( n*(n+1)/2 + n-k + 1, n-k) for n>=k>=0.

%C A triangle having similar properties and complementary construction is the dual triangle A121436.

%F T(n,k) = [A121412^(-n*(n+1)/2 - 2)](n,k) for n>=k>=0; i.e., row n of A121335^-1 equals row n of matrix power A121412^(-n*(n+1)/2 - 2).

%e Triangle, A121335^-1, begins:

%e 1;

%e -3, 1;

%e 0, -5, 1;

%e -12, 4, -8, 1;

%e -129, -22, 18, -12, 1;

%e -1785, -238, -51, 51, -17, 1;

%e -30291, -3634, -345, -161, 115, -23, 1;

%e -608565, -66750, -6111, -285, -505, 225, -30, 1;

%e -14112744, -1432296, -122227, -9177, 665, -1387, 399, -38, 1; ...

%e Triangle A121412 begins:

%e 1;

%e 1, 1;

%e 3, 1, 1;

%e 18, 4, 1, 1;

%e 170, 30, 5, 1, 1; ...

%e Row 3 of A121335^-1 equals row 3 of A121412^(-8), which begins:

%e 1;

%e -8, 1;

%e 12, -8, 1;

%e -12, 4, -8, 1; ...

%e Row 4 of A121335^-1 equals row 4 of A121412^(-12), which begins:

%e 1;

%e -12, 1;

%e 42, -12, 1;

%e -34, 30, -12, 1;

%e -129, -22, 18, -12, 1; ...

%o (PARI) /* Matrix Inverse of A121335 */ {T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial(r*(r-1)/2+r-c+1,r-c)))); return((M^-1)[n+1,k+1])}

%Y Cf. A121335 (matrix inverse); A121412; variants: A121438, A121439, A121441; A121436 (dual).

%K sign,tabl

%O 0,2

%A _Paul D. Hanna_, Aug 29 2006