login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121436
Matrix inverse of triangle A122176, where A122176(n,k) = C( k*(k+1)/2 + n-k + 1, n-k) for n>=k>=0.
4
1, -2, 1, 3, -3, 1, -7, 9, -5, 1, 26, -37, 25, -8, 1, -141, 210, -155, 60, -12, 1, 1034, -1575, 1215, -516, 126, -17, 1, -9693, 14943, -11806, 5270, -1426, 238, -23, 1, 111522, -173109, 138660, -63696, 18267, -3417, 414, -30, 1, -1528112, 2381814, -1923765, 899226, -267084, 53431, -7337, 675, -38, 1
OFFSET
0,2
FORMULA
(1) T(n,k) = A121435(n-1,k) - A121435(n-1,k+1).
(2) T(n,k) = (-1)^(n-k)*[A107876^(k*(k+1)/2 + 2)](n,k);
i.e., column k equals signed column k of A107876^(k*(k+1)/2 + 2).
G.f.s for column k:
(3) 1 = Sum_{j>=0} T(j+k,k)*x^j/(1-x)^( j*(j+1)/2) + j*k + k*(k+1)/2 + 2);
(4) 1 = Sum_{j>=0} T(j+k,k)*x^j*(1+x)^( j*(j-1)/2) + j*k + k*(k+1)/2 + 2).
EXAMPLE
Triangle begins:
1;
-2, 1;
3, -3, 1;
-7, 9, -5, 1;
26, -37, 25, -8, 1;
-141, 210, -155, 60, -12, 1;
1034, -1575, 1215, -516, 126, -17, 1;
-9693, 14943, -11806, 5270, -1426, 238, -23, 1;
111522, -173109, 138660, -63696, 18267, -3417, 414, -30, 1;
-1528112, 2381814, -1923765, 899226, -267084, 53431, -7337, 675, -38, 1; ...
PROG
(PARI) /* Matrix Inverse of A122176 */
{T(n, k)=local(M=matrix(n+1, n+1, r, c, if(r>=c, binomial((c-1)*(c-2)/2+r, r-c)))); return((M^-1)[n+1, k+1])}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
(PARI) /* Obtain by G.F. */
{T(n, k)=polcoeff(1-sum(j=0, n-k-1, T(j+k, k)*x^j/(1-x+x*O(x^n))^(j*(j+1)/2+j*k+k*(k+1)/2+2)), n-k)}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
Cf. A098568, A107876; unsigned columns: A107881, A107886.
Sequence in context: A353585 A103525 A294432 * A330694 A088074 A071463
KEYWORD
sign,tabl
AUTHOR
Paul D. Hanna, Aug 27 2006
STATUS
approved