login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106210
Triangular matrix T, read by rows, that satisfies: [T^-1](n,k) = -k^2*T(n-2,k) when (n-2)>=k>=0, with T(n,n) = 1 and T(n+1,n) = (2*n+1) for n>=0.
1
1, 1, 1, 3, 3, 1, 16, 16, 5, 1, 127, 127, 39, 7, 1, 1363, 1363, 416, 72, 9, 1, 18628, 18628, 5671, 967, 115, 11, 1, 311250, 311250, 94643, 16027, 1864, 168, 13, 1, 6173791, 6173791, 1876160, 316600, 36415, 3191, 231, 15, 1, 142190703, 142190703
OFFSET
0,4
COMMENTS
Both column 0 and column 1 form A082161. Row sums form A106211.
FORMULA
T(n, k) = A102086(n, k)/(k+1) for n>=0, k>=0. T(n, 0) = A082161(n) for n>0, with T(0, 0) = 1. G.f. for column k: 1/(1-k*x) = Sum_{n>=0} T(n+k, k)*x^n*prod_{j=1, n+1} (1-(j+k)*x).
EXAMPLE
Triangle T begins:
1;
1,1;
3,3,1;
16,16,5,1;
127,127,39,7,1;
1363,1363,416,72,9,1;
18628,18628,5671,967,115,11,1;
311250,311250,94643,16027,1864,168,13,1;
6173791,6173791,1876160,316600,36415,3191,231,15,1; ...
Matrix inverse T^-1 begins:
1;
-1,1;
0,-3,1;
0,-1,-5,1;
0,-3,-4,-7,1;
0,-16,-20,-9,-9,1;
0,-127,-156,-63,-16,-11,1;
0,-1363,-1664,-648,-144,-25,-13,1;
0,-18628,-22684,-8703,-1840,-275,-36,-15,1; ...
where [T^-1](n,k) = -k^2*T(n-2,k) when (n-2)>=k>=0.
G.f. for column 0: 1/(1-0x) = 1*(1-1x) + 1*x*(1-1x)(1-2x) +
3*x^2*(1-1x)(1-2x)(1-3x) + 16*x^3*(1-1x)(1-2x)(1-3x)(1-4x) + ...
+ T(n,0)*x^n*(1-1x)(1-2x)*..*(1-(n+1)*x) + ...
G.f. for column 1: 1/(1-1x) = 1*(1-2x) + 3*x*(1-2x)(1-3x) +
16*x^2*(1-2x)(1-3x)(1-4x) + 127*x^3*(1-2x)(1-3x)(1-4x)(1-5x) + ...
+ T(n+1,1)*x^n*(1-2x)(1-3x)*..*(1-(n+2)*x) + ...
G.f. for column 2: 1/(1-2x) = 1*(1-3x) + 5*x*(1-3x)(1-4x) +
39*x^2*(1-3x)(1-4x)(1-5x) + 416*x^3*(1-3x)(1-4x)(1-5x)(1-6x) + ...
+ T(n+2,2)*x^n*(1-3x)(1-4x)*..*(1-(n+3)*x) + ...
PROG
(PARI) T(n, k)=if(n<k, 0, if(n==k, 1, polcoeff( 1/(1-k*x)-sum(i=0, n-k-1, T(i+k, k)*x^i*prod(j=1, i+1, 1-(j+k)*x+x*O(x^(n-k)))), n-k)))
(PARI) T(n, k)=local(A=matrix(1, 1), B); A[1, 1]=1; for(m=2, n+2, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i, j]=j, if(j==1, B[i, j]=(A^2)[i-1, 1], B[i, j]=(A^2)[i-1, j])); )); A=B); return(if(k==0, if(n==0, 1, A[n+1, k+1]), A[n+1, k]/k^2))
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, May 01 2005
STATUS
approved