OFFSET
1,4
COMMENTS
The Bell transform of A218827(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 17 2016
LINKS
Kreweras, G. and Dumont, D., Sur les anagrammes alternés. (French) [On alternating anagrams] Discrete Math. 211 (2000), no. 1-3, 103--110. MR1735352 (2000h:05013).
FORMULA
T(n,k) = C(n-1,0)*c(1)*T(n-1,k-1) + C(n-1,1)*c(2)*T(n-2,k-1) + ... + C(n-1,n-1)*c(n-k+1)*T(k-1,k-1), where c(i) = A218827(i).
EXAMPLE
Triangle begins:
1;
1, 1;
3, 3, 1;
16, 15, 6, 1;
129, 110, 45, 10, 1;
1438, 1104, 435, 105, 15, 1;
20955, 14455, 5334, 1295, 210, 21, 1;
384226, 238536, 81256, 19089, 3220, 378, 28, 1;
MATHEMATICA
m = 10(*terms of A218827 for m-1 rows*); matc = Array[0&, {m, m}];
(* The function BellMatrix is defined in A264428.*)
a366[n_] := (-2^(-1))^(n - 2)*Sum[Binomial[n, k]*(1 - 2^(n + k + 1))* BernoulliB[n + k + 1], {k, 0, n}];
ci[n_, k_] := ci[n, k] = Module[{v}, If[matc[[n, k]] == 0, If[n == k, v = 1, If[k == 1, v = c[n], v = Sum[Binomial[n - 1, i - 1]*c[i]*ci[n - i, k - 1], {i, 1, n - k + 1}]]]; matc[[n, k]] = v]; Return[matc[[n, k]] ]];
c[n_] := a366[n + 1] - If[n == 1, 0, Sum[ci[n, i], {i, 2, n}]]
T = Rest /@ BellMatrix[c[# + 1]&, m] // Rest;
Table[T[[n, k]], {n, 1, m - 1}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 03 2019 *)
PROG
CROSSREFS
KEYWORD
AUTHOR
N. J. A. Sloane, Apr 04 2014
EXTENSIONS
More terms from Peter Luschny, Jan 17 2016
STATUS
approved