login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A102086 Triangular matrix, read by rows, that satisfies: T(n,k) = [T^2](n-1,k) when n>k>=0, with T(n,n) = (n+1). 11
1, 1, 2, 3, 4, 3, 16, 20, 9, 4, 127, 156, 63, 16, 5, 1363, 1664, 648, 144, 25, 6, 18628, 22684, 8703, 1840, 275, 36, 7, 311250, 378572, 144243, 29824, 4200, 468, 49, 8, 6173791, 7504640, 2849400, 582640, 79775, 8316, 735, 64, 9, 142190703, 172785512 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Column 0 forms A082161. Column 1 forms A102087. Row sums form A102088.

LINKS

Table of n, a(n) for n=0..46.

FORMULA

T(n, 0) = A082161(n) for n>0, with T(0, 0) = 1.

G.f. for column k: T(k, k) = k+1 = Sum_{n>=0} T(n+k, k)*x^n*prod_{j=1, n+1} (1-(j+k)*x).

EXAMPLE

Rows of T begin:

[1],

[1,2],

[3,4,3],

[16,20,9,4],

[127,156,63,16,5],

[1363,1664,648,144,25,6],

[18628,22684,8703,1840,275,36,7],

[311250,378572,144243,29824,4200,468,49,8],

[6173791,7504640,2849400,582640,79775,8316,735,64,9],...

Matrix square T^2 equals T excluding the main diagonal:

[1],

[3,4],

[16,20,9],

[127,156,63,16],

[1363,1664,648,144,25],...

G.f. for column 0: 1 = (1-x) + 1*x*(1-x)(1-2x) + 3*x^2*(1-x)(1-2x)(1-3x) + ... + T(n,0)*x^n*(1-x)(1-2x)(1-3x)*..*(1-(n+1)*x) + ...

G.f. for column 1: 2 = 2(1-2x) + 4*x*(1-2x)(1-3x) + 20*x^2*(1-2x)(1-3x)(1-4x) + ... + T(n+1,1)*x^n*(1-2x)(1-3x)(1-4x)*..*(1-(n+2)*x) + ...

G.f. for column 2: 3 = 3(1-3x) + 9*x*(1-3x)(1-4x) + 63*x^2*(1-3x)(1-4x)(1-5x) + ... + T(n+2,2)*x^n*(1-3x)(1-4x)(1-5x)*..*(1-(n+3)*x) + ...

MAPLE

{T(n, k)=local(A=matrix(1, 1), B); A[1, 1]=1; for(m=2, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i, j]=j, if(j==1, B[i, j]=(A^2)[i-1, 1], B[i, j]=(A^2)[i-1, j])); )); A=B); return(A[n+1, k+1])}

MATHEMATICA

T[n_, n_] := n+1; T[n_, k_] /; k>n = 0; T[n_, k_] /; k == n-1 := n^2; T[n_, k_] := T[n, k] = Coefficient[1-Sum[T[i, k]*x^i*Product[1-(j+k)*x, {j, 1, i-k+1}], {i, k, n-1}], x, n]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-Fran├žois Alcover, Dec 15 2014, after PARI script *)

PROG

(PARI) {T(n, k)=if(n<k, 0, if(n==k, k+1, polcoeff(1-sum(i=k, n-1, T(i, k)*x^i*prod(j=1, i-k+1, 1-(j+k)*x+x*O(x^n))), n)))}

CROSSREFS

Cf. A082161, A102087, A102088.

Cf. A102316.

Sequence in context: A211507 A295368 A283832 * A009184 A009716 A009590

Adjacent sequences:  A102083 A102084 A102085 * A102087 A102088 A102089

KEYWORD

nonn,tabl

AUTHOR

Paul D. Hanna, Dec 29 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 20 14:02 EST 2020. Contains 331094 sequences. (Running on oeis4.)