The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A102089 Triangle read by rows: T(n,k) is the number of k-matchings in the C_n X P_3 graph (C_n is the cycle graph on n vertices and P_3 is the path graph on 3 vertices). 2
 1, 10, 24, 12, 1, 15, 69, 107, 36, 1, 20, 142, 440, 588, 288, 32, 1, 25, 240, 1125, 2710, 3227, 1645, 240, 1, 30, 363, 2290, 8139, 16446, 18141, 9870, 2148, 108, 1, 35, 511, 4060, 19222, 55867, 99085, 103231, 58310, 15267, 1274, 1, 40, 684, 6560, 38934 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 COMMENTS Row 2n contains 3n+1 terms; row 2n+1 contains 3n+2 terms. Row sums yield A102090 T(2n,3n) yields A102091 REFERENCES H. Hosoya and A. Motoyama, An effective algorithm for obtaining polynomials for dimer statistics. Application of operator technique on the topological index to two- and three-dimensional rectangular and torus lattices, J. Math. Physics 26 (1985) 157-167 (eq. (51) and Table VII). LINKS FORMULA The row generating polynomials A[n] satisfy A[n] =(1 + 2t)A[n - 1] + t(3 + 10t + 6t^2)A[n - 2] + t^2*(3 + 7t)A[n - 3] - t^3*( - 1 + 3t + 12t^2 + 10t^3)A[n - 4] - t^5*(3 + 3t + 4t^2)A[n - 5] + t^7*(3 + 2t + 6t^2)A[n - 6] - t^9*(1 - 2t)A[n - 7] - t^12*A[n - 8] G.f.= - z^2*( - 1 - 10t + z^6*t^9 - 3z^5*t^7 - 3z^2*t^2 - 17z^2*t^3 - z^3*t^3 + z^3*t^4 + 3z^4*t^5 + 9z^4*t^6 - 8z^4*t^7 + 33z^3*t^5 - 2z^2*t^4 - 8z^5*t^8 + t^12*z^7 - 4t^8*z^4 + 49t^6*z^3 + 48t^5*z^2 - 3t^9*z^5 - 4t^11*z^6 - 36t^9*z^4 + 40t^7*z^3 + 40t^6*z^2 - 26t^10*z^5 + 2z^7*t^13 + 8t^12*z^6 - 25zt^2 - 47zt^3 - 12zt^4 - 3zt - 24t^2 - 12t^3)/[(z^2*t^3 - 1 - zt)(z^6*t^9 - z^5*t^7 + z^5*t^6 - 5z^4*t^6 - 3z^4*t^5 - 2z^4*t^4 - 2z^3*t^4 + z^3*t^3 + 5z^2*t^3 + z^3*t^2 + 7z^2*t^2 + 2z^2*t + 3zt + z - 1)]. EXAMPLE T(2,3)=12 because in the graph C_2 X P_3 with vertex set {A,B,C,A',B',C'} and edge set {AB,AC,A'B',B'C',a,a',b,b',c,c'}, where a and a' are two edges between A and A', b and b' are two edges between B and B' and c and c' are two edges between C and C', we have the following twelve3-matchings (as a matter of fact they are perfect matchings): eight 3-matchings by taking one edge from each of the pairs {a,a'},{b,b'} and {c,c'}; two 3-matchings by taking AB, A'B' and either edge from the pair {c,c'}; two 3-matchings by taking BC, B'C' and either edge from the pair {a,a'}. Triangle starts: 1, 10, 24, 12; 1, 15, 69, 107, 36; 1, 20, 142, 440, 588, 288, 32; 1, 25, 240, 1125, 2710, 3227, 1645, 240; MAPLE G:= - z^2*( - 1 - 10*t + z^6*t^9 - 3*z^5*t^7 - 3*z^2*t^2 - 17*z^2*t^3 - z^3*t^3 + z^3*t^4 + 3*z^4*t^5 + 9*z^4*t^6 - 8*z^4*t^7 + 33*z^3*t^5 - 2*z^2*t^4 - 8*z^5*t^8 + t^12*z^7 - 4*t^8*z^4 + 49*t^6*z^3 + 48*t^5*z^2 - 3*t^9*z^5 - 4*t^11*z^6 - 36*t^9*z^4 + 40*t^7*z^3 + 40*t^6*z^2 - 26*t^10*z^5 + 2*z^7*t^13 + 8*t^12*z^6 - 25*z*t^2 - 47*z*t^3 - 12*z*t^4 - 3*z*t - 24*t^2 - 12*t^3)/(z^2*t^3 - 1 - z*t)/(z^6*t^9 - z^5*t^7 + z^5*t^6 - 5*z^4*t^6 - 3*z^4*t^5 - 2*z^4*t^4 - 2*z^3*t^4 + z^3*t^3 + 5*z^2*t^3 + z^3*t^2 + 7*z^2*t^2 + 2*z^2*t + 3*z*t + z - 1): Gser:=simplify(series(G, z=0, 13)): for n from 2 to 9 do P[n]:=coeff(Gser, z^n) od: b:=proc(n) if n mod 2 = 0 then 1 + 3*n/2 else 1 + b(n - 1) fi end:for n from 2 to 9 do seq(coeff(t*P[n], t^k), k=1..b(n)) od; # yields sequence in triangular form CROSSREFS Cf. A102090, A102091. Sequence in context: A300150 A187621 A231880 * A250797 A250583 A223415 Adjacent sequences:  A102086 A102087 A102088 * A102090 A102091 A102092 KEYWORD nonn,tabf AUTHOR Emeric Deutsch, Dec 29 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 20:36 EDT 2021. Contains 348047 sequences. (Running on oeis4.)