login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A102084 a(1) = 0; for n>0, write 2n=p+q (p, q prime), p*q maximal; then a(n)=p*q (see A073046). 7
0, 4, 9, 15, 25, 35, 49, 55, 77, 91, 121, 143, 169, 187, 221, 247, 289, 323, 361, 391, 437, 403, 529, 551, 589, 667, 713, 703, 841, 899, 961, 943, 1073, 1147, 1189, 1271, 1369, 1363, 1517, 1591, 1681, 1763, 1849, 1927, 2021, 1891, 2209, 2279, 2257, 2491 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

For n>1, largest semiprime whose sum of prime factors = 2n. Assumes the Goldbach conjecture is true. Also the largest semiprime <= n^2.

Also the greatest integer x such that x' = 2*n, or 0 if there is no such x, where x' is the arithmetic derivative (A003415). Bisection of A099303. The only even number without an anti-derivative is 2. All terms are <= n^2, with equality only when n is prime. In fact a(n) = n^2 - k^2, where k is the least number such that both n-k and n+k are prime; k = A047160(n). It appears that the anti-derivatives of even numbers are overwhelmingly semiprimes of the form n^2 - k^2. For example, 1000 has 28 anti-derivatives, all of this form. Sequence A189763 lists the even numbers that have anti-derivatives not of this form. - T. D. Noe, Apr 27 2011

LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000

FORMULA

a(n) = n^2 - A047160(n)^2. - Jason Kimberley, Jun 26 2012

EXAMPLE

n=13: 2n = 26; 26 = 23 + 3 = 19 + 7 = 13 + 13; 13*13 = maximal => p*q = 13*13 = 169.

MATHEMATICA

f[n_] := Block[{pf = FactorInteger[n]}, If[Plus @@ Last /@ pf == 2, If[ Length[pf] == 2, Plus @@ First /@ pf, 2pf[[1, 1]]], 0]]; t = Table[0, {51}]; Do[a = f[n]; If[ EvenQ[a] && 0 < a < 104, t[[a/2]] = n], {n, 2540}]; t (* Robert G. Wilson v, Jun 14 2005 *)

Table[k = 0; While[k < n && (! PrimeQ[n - k] || ! PrimeQ[n + k]), k++]; If[k == n, 0, (n - k)*(n + k)], {n, 100}] (* T. D. Noe, Apr 27 2011 *)

CROSSREFS

Cf. A073046, A003415, A047160, A099303, A189762.

Sequence in context: A134675 A050530 A278021 * A193315 A030664 A070160

Adjacent sequences:  A102081 A102082 A102083 * A102085 A102086 A102087

KEYWORD

nonn

AUTHOR

Michael Taktikos, Feb 16 2005

EXTENSIONS

Edited by N. J. A. Sloane, Aug 29 2008 at the suggestion of R. J. Mathar

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 21:52 EDT 2020. Contains 334671 sequences. (Running on oeis4.)