login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073046
Write 2*n = p+q (p,q prime), p*q minimal; then a(n) = p*q.
6
4, 9, 15, 21, 35, 33, 39, 65, 51, 57, 95, 69, 115, 161, 87, 93, 155, 217, 111, 185, 123, 129, 215, 141, 235, 329, 159, 265, 371, 177, 183, 305, 427, 201, 335, 213, 219, 365, 511, 237, 395, 249, 415, 581, 267, 445, 623, 1501, 291, 485, 303, 309, 515, 321, 327
OFFSET
2,1
COMMENTS
Least semiprime whose sum of prime factors equals 2*n.
Assuming Goldbach's conjecture, a(n) exists for all n >= 2. - David James Sycamore, Jan 08 2019
LINKS
FORMULA
For all n except 3, a(n) = A288814(2*n). - David James Sycamore, Jan 08 2019
EXAMPLE
n=13: 2n=26; 26 = 23 + 3 = 19 + 7 = 13 + 13; 23*3 = minimal => p*q = 23*3 = 69.
MATHEMATICA
Array[Block[{p = 2, q}, While[! PrimeQ@ Set[q, 2 # - p], p = NextPrime[p]]; p q] &, 55, 2] (* Michael De Vlieger, Aug 02 2020 *)
PROG
(Haskell)
a073046 n = head $ dropWhile (== 0) $
zipWith (*) prims $ map (a061397 . (2*n -)) prims
where prims = takeWhile (<= n) a000040_list
-- Reinhard Zumkeller, Aug 28 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
Werner D. Sand, Aug 31 2002
EXTENSIONS
Corrected by Ray Chandler, Jun 11 2005
STATUS
approved