

A066495


Numbers k such that f(k) = f(k1) + f(k2) where f denotes the prime gaps function given by f(m) = prime(m+1)  prime(m).


5



4, 9, 15, 21, 51, 71, 118, 184, 208, 227, 231, 238, 255, 267, 290, 317, 326, 354, 381, 392, 396, 437, 494, 499, 544, 553, 569, 627, 645, 660, 720, 756, 796, 922, 932, 937, 960, 968, 990, 1027, 1034, 1087, 1103, 1130, 1157, 1173, 1175, 1227, 1237, 1251
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS



FORMULA



EXAMPLE

f(9) = 6 = 4 + 2 = f(8) + f(7); so 9 is a term.


MATHEMATICA

f[n_] := Prime[n + 1]  Prime[n]; Select[Range[3, 10^4], f[ # ] == f[ #  1] + f[ #  2] &]


PROG

(define (A066495v2 n) (+ 2 (A138042 n))) ;; Alternative definition.


CROSSREFS

Cf. A000040 (function p in the definition).
Cf. A001223 (function f in the definition).


KEYWORD

nonn


AUTHOR



EXTENSIONS



STATUS

approved



