The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A227419 Least k such that the sum of the semiprime divisors equals n times the sum of the prime divisors, or 0 if no such k exists. 2
 4, 9, 90, 25, 300, 49, 735, 1770, 7644, 121, 2541, 169, 5187, 6710, 8463, 289, 10982, 361, 11913, 13202, 24339, 529, 18515, 19513, 37851, 20723, 43239, 841, 35322, 961, 43215, 20705, 146595, 270470, 110823, 1369, 62835, 46535, 632316, 1681, 106074, 1849 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS Least k such that A076290(k) = n*A008472(k), or 0 if no such k exists. a(n) = n^2 if n is a prime number => A001248 is a subsequence. Conjecture: a(n) > 0. LINKS Donovan Johnson, Table of n, a(n) for n = 2..1000 EXAMPLE a(12) = 2541: The divisors of 2541 are {1, 3, 7, 11, 21, 33, 77, 121, 231, 363, 847, 2541}, so the sum of the semiprime divisors is 21 + 33 + 77 + 121 = 252, which is 12 times the sum of prime divisors 3 + 7 + 11 = 21. MAPLE with(numtheory):for n from 2 to 43 do:ii:=0:for k from 2 to 700000 while(ii=0) do:x:=divisors(k):n1:=nops(x): y:=factorset(k):n2:=nops(y):s1:=0:s2:=0:for i from 1 to n1 do: if bigomega(x[i])=2 then s1:=s1+x[i]:else fi:od: s2:=sum('y[i]', 'i'=1..n2):if s1=n*s2 then ii:=1: printf ( "%d %d \n", n, k):else fi:od:od: CROSSREFS Cf. A001248, A076290, A008472. Sequence in context: A248245 A077530 A115551 * A242097 A220972 A335088 Adjacent sequences:  A227416 A227417 A227418 * A227420 A227421 A227422 KEYWORD nonn AUTHOR Michel Lagneau, Jul 18 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 11:42 EST 2022. Contains 350465 sequences. (Running on oeis4.)