login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073044
Triangle read by rows: T(n,k) (n >= 1, n-1 >= k >= 0) = number of n-sequences of 0's and 1's with no pair of adjacent 0's and exactly k pairs of adjacent 1's.
3
2, 2, 1, 2, 2, 1, 2, 3, 2, 1, 2, 4, 4, 2, 1, 2, 5, 6, 5, 2, 1, 2, 6, 9, 8, 6, 2, 1, 2, 7, 12, 14, 10, 7, 2, 1, 2, 8, 16, 20, 20, 12, 8, 2, 1, 2, 9, 20, 30, 30, 27, 14, 9, 2, 1, 2, 10, 25, 40, 50, 42, 35, 16, 10, 2, 1, 2, 11, 30, 55, 70, 77, 56, 44, 18, 11, 2, 1, 2, 12, 36, 70, 105, 112, 112, 72
OFFSET
1,1
COMMENTS
T(n,k) is the number of domino tilings of 2 X (n+1) rectangles that have n+2-k perimeter dominoes. - Bridget Tenner, Oct 14 2019
REFERENCES
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see pp. 67-68).
I. Goulden and D. Jackson, Combinatorial Enumeration, John Wiley and Sons, 1983, page 76.
LINKS
B. E. Tenner, Tiling-based models of perimeter and area, arXiv:1811.00082 [math.CO], 2018.
FORMULA
Recurrence: T(n, k) = T(n-1, k-1) + T(n-2, k).
G.f.: G(t, z) = z*(2+2*z-t*z)/(1-t*z-z^2). - Emeric Deutsch, Feb 01 2005
T(n,k) = binomial(floor((n+k-1)/2),k) + binomial(floor((n+k-2)/2),k). - Jeremy Dover, Jun 07 2016
T(n,k) = A046854(n-1,k) + A046854(n-2,k), where A046854 is extended so that A046854(-1,0) = 1. - Jeremy Dover, Jun 07 2016
EXAMPLE
T(5,2)=4 because the sequences of length 5 with 2 pairs 11 are 11101, 11011,10111, 01110. Also the 2 X (5+1) rectangle has 4 domino tilings with 5+2-2 perimeter dominoes. - Bridget Tenner, Oct 14 2019
Triangle starts:
2;
2, 1;
2, 2, 1;
2, 3, 2, 1;
2, 4, 4, 2, 1;
MAPLE
G:=z*(2+2*z-t*z)/(1-t*z-z^2):Gser:=simplify(series(G, z=0, 17)):for n from 1 to 15 do P[n]:=sort(coeff(Gser, z^n)) od:for n from 1 to 13 do seq(coeff(t*P[n], t^k), k=1..n) od; # yields sequence in triangular form
MATHEMATICA
nn = 15; f[list_] := Select[list, # > 0 &]; Map[f, Drop[CoefficientList[Series[(1 + x) (1 + x - y x)/(1 - y x - x^2), {x, 0, nn}], {x, y}], 1]] //Flatten (* Geoffrey Critzer, Mar 05 2012 *)
PROG
(PARI) T(n, k) = binomial((n+k-1)\2, k) + binomial((n+k-2)\2, k) \\ Charles R Greathouse IV, Jun 07 2016
CROSSREFS
Row sums are the Fibonacci numbers (A000045).
Cf. A046854.
Weighted row sums 2*T(n,n) + 3*T(n,n-1) + 4*T(n,n-2) + ... give A320947. - Bridget Tenner, Oct 14 2019
Sequence in context: A178305 A338621 A024327 * A361870 A124800 A247349
KEYWORD
nonn,tabl
AUTHOR
Roger Cuculière, Aug 24 2002
EXTENSIONS
More terms from Emeric Deutsch, Feb 01 2005
STATUS
approved