OFFSET
1,1
COMMENTS
T(n,k) is the number of domino tilings of 2 X (n+1) rectangles that have n+2-k perimeter dominoes. - Bridget Tenner, Oct 14 2019
REFERENCES
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see pp. 67-68).
I. Goulden and D. Jackson, Combinatorial Enumeration, John Wiley and Sons, 1983, page 76.
LINKS
B. E. Tenner, Tiling-based models of perimeter and area, arXiv:1811.00082 [math.CO], 2018.
FORMULA
Recurrence: T(n, k) = T(n-1, k-1) + T(n-2, k).
G.f.: G(t, z) = z*(2+2*z-t*z)/(1-t*z-z^2). - Emeric Deutsch, Feb 01 2005
T(n,k) = binomial(floor((n+k-1)/2),k) + binomial(floor((n+k-2)/2),k). - Jeremy Dover, Jun 07 2016
T(n,k) = A046854(n-1,k) + A046854(n-2,k), where A046854 is extended so that A046854(-1,0) = 1. - Jeremy Dover, Jun 07 2016
EXAMPLE
T(5,2)=4 because the sequences of length 5 with 2 pairs 11 are 11101, 11011,10111, 01110. Also the 2 X (5+1) rectangle has 4 domino tilings with 5+2-2 perimeter dominoes. - Bridget Tenner, Oct 14 2019
Triangle starts:
2;
2, 1;
2, 2, 1;
2, 3, 2, 1;
2, 4, 4, 2, 1;
MAPLE
G:=z*(2+2*z-t*z)/(1-t*z-z^2):Gser:=simplify(series(G, z=0, 17)):for n from 1 to 15 do P[n]:=sort(coeff(Gser, z^n)) od:for n from 1 to 13 do seq(coeff(t*P[n], t^k), k=1..n) od; # yields sequence in triangular form
MATHEMATICA
nn = 15; f[list_] := Select[list, # > 0 &]; Map[f, Drop[CoefficientList[Series[(1 + x) (1 + x - y x)/(1 - y x - x^2), {x, 0, nn}], {x, y}], 1]] //Flatten (* Geoffrey Critzer, Mar 05 2012 *)
PROG
(PARI) T(n, k) = binomial((n+k-1)\2, k) + binomial((n+k-2)\2, k) \\ Charles R Greathouse IV, Jun 07 2016
CROSSREFS
Row sums are the Fibonacci numbers (A000045).
Cf. A046854.
Weighted row sums 2*T(n,n) + 3*T(n,n-1) + 4*T(n,n-2) + ... give A320947. - Bridget Tenner, Oct 14 2019
KEYWORD
nonn,tabl
AUTHOR
Roger Cuculière, Aug 24 2002
EXTENSIONS
More terms from Emeric Deutsch, Feb 01 2005
STATUS
approved