login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134675
Row sums of triangle A134674.
4
1, 4, 9, 15, 25, 30, 49, 55, 76, 80, 121, 112, 169, 154, 201, 207, 289, 237, 361, 310, 395, 374, 529, 420, 606, 520, 661, 604, 841, 618, 961, 799, 975, 884, 1165, 919, 1369, 1102, 1361, 1202, 1681, 1206, 1849, 1480, 1761, 1610, 2209, 1612, 2360, 1843, 2325, 2062, 2809, 2010, 2897, 2368, 2903, 2552, 3481
OFFSET
1,2
FORMULA
For n>1, a(n) = n^2 iff n is prime.
a(n) = A007434(n) + A001065(n). - Conjectured by John Mason and proved by Max Alekseyev, Jan 07 2015
EXAMPLE
a(4) = 15 = sum of row 4 terms of triangle A134674: (4, + 3 + 4 + 4).
MATHEMATICA
f1[p_, e_] := p^(2*e) - p^(2*e-2); f2[p_, e_] := (p^(e+1)-1)/(p-1); a[1] = 1; a[n_] := Times @@ f1 @@@ (f = FactorInteger[n]) + Times @@ f2 @@@ f - n; Array[a, 60] (* Amiram Eldar, Aug 22 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, d^2*moebius(n/d)+d)-n /* Max Alekseyev, Jan 07 2015 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Nov 05 2007
EXTENSIONS
More terms from John Mason, Jan 07 2015
STATUS
approved