Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Aug 22 2023 11:58:40
%S 1,4,9,15,25,30,49,55,76,80,121,112,169,154,201,207,289,237,361,310,
%T 395,374,529,420,606,520,661,604,841,618,961,799,975,884,1165,919,
%U 1369,1102,1361,1202,1681,1206,1849,1480,1761,1610,2209,1612,2360,1843,2325,2062,2809,2010,2897,2368,2903,2552,3481
%N Row sums of triangle A134674.
%H John Mason, <a href="/A134675/b134675.txt">Table of n, a(n) for n = 1..1000</a>
%F For n>1, a(n) = n^2 iff n is prime.
%F a(n) = A007434(n) + A001065(n). - Conjectured by _John Mason_ and proved by _Max Alekseyev_, Jan 07 2015
%e a(4) = 15 = sum of row 4 terms of triangle A134674: (4, + 3 + 4 + 4).
%t f1[p_, e_] := p^(2*e) - p^(2*e-2); f2[p_, e_] := (p^(e+1)-1)/(p-1); a[1] = 1; a[n_] := Times @@ f1 @@@ (f = FactorInteger[n]) + Times @@ f2 @@@ f - n; Array[a, 60] (* _Amiram Eldar_, Aug 22 2023 *)
%o (PARI) a(n) = sumdiv(n,d,d^2*moebius(n/d)+d)-n /* _Max Alekseyev_, Jan 07 2015 */
%Y Cf. A001065, A007434, A134674.
%K nonn
%O 1,2
%A _Gary W. Adamson_, Nov 05 2007
%E More terms from _John Mason_, Jan 07 2015