OFFSET
1,2
COMMENTS
Bisection of A099303. In contrast to the sequence for even numbers, A102084, there appear to be an infinite number of zeros in this sequence (see A098700). The density of the zeros appears to be 1/3. Quite Often a(n) = 4n-2. For odd number 2n+1, an upper bound on the largest anti-derivative x appears to ((2n+1)/3)^(3/2).
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
MATHEMATICA
dn[0] = 0; dn[1] = 0; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus @@ (n*f[[2]]/f[[1]])]]; nn = 100; d = Array[dn, (nn/2)^2]; Table[pos = Position[d, n]; If[pos == {}, 0, pos[[-1, 1]]], {n, 3, nn, 2}]
CROSSREFS
KEYWORD
nonn
AUTHOR
T. D. Noe, Apr 27 2011
STATUS
approved