

A189760


Least nonnegative number whose nth arithmetic derivative (A003415) is zero and lower derivatives are nonzero.


6



0, 1, 2, 6, 9, 14, 33, 62, 177, 414, 1155, 1719, 2625, 4018, 6849, 9770, 17675, 30206, 90609, 260343, 336006, 757995, 1290874, 2029875, 4059746, 7037655, 17594075, 50850483, 68589598, 186888243, 373659254, 1884639669
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

For at least n = 1, 3, 4, 5, 6, 7, 10, 14, 15, 17, 21, 23, 24, 25, 26, 27, 28, 29, we have = a(n) = A003415(a(1+n)), thus we have subsequences like 6, 9, 14, 33, 62, 177 that are obtained by iterating A098699 starting from 6, but as A098699(177) = 0, that run ends there. From a(14) to a(16) we have a run of three such terms: 6849, 9770, 17675. A yet longer such run is from a(23) to a(30): 2029875, 4059746, 7037655, 17594075, 50850483, 68589598, 186888243, 373659254.
Applying A327968 to these terms yields: 0, 0, 1, 5, 5, 5, 5, 5, 5, 7, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, ...
Question: Are there indefinitely long sequences of iterations of A003415 that end with steps ... > p > 1 > 0, with p=5? Are there such sequences for any other prime p? Can we construct a such sequence that is guaranteed to be infinite? See the subtree depicted in A327975 and conjecture #8 in Ufnarovski and Ahlander paper.
(End)


LINKS



FORMULA



MATHEMATICA

nn = 15; t = Table[0, {nn}]; n = 0; cnt = 0; While[cnt < nn, n++; k = 0; d = n; While[f = Transpose[FactorInteger[d]]; d > 1 && And @@ MapThread[Greater, f], k++; d = Plus @@ (d*f[[2]]/f[[1]])]; If[d == 1, k++; If[k <= nn && t[[k]] == 0, t[[k]] = n; cnt++]]]; Join[{0}, t]


CROSSREFS

Subsequence of A048103. Differs from A327967 for the first time at n=19.


KEYWORD

nonn,more


AUTHOR



EXTENSIONS



STATUS

approved



