login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A320666 a(n) is the maximum number of liberties a single group can have on an otherwise empty n X n Go board. 1
0, 2, 6, 9, 14, 22, 29, 38, 51, 61, 74, 92, 105, 122, 145, 161, 182, 210, 229, 254, 287, 309, 338, 376 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

For 1 X 1 the solution is a single stone on the only possible position and is not a valid final board state in a real game of Go.

LINKS

Table of n, a(n) for n=1..24.

Ton Hospel, Table of n, a(n) for n = 1..24

FORMULA

Exact for n<= 24, Conjectured for n > 24 but it is at least a lower bound:

  a(n) = 0 if n = 1.

  a(n) = 2 if n = 2.

  a(n) = 6 if n = 3.

  a(n) = n*(2*n-1)/3    if n = 0 (mod 3) and n != 3.

  a(n) = ((2n-1)^2+5)/6 if n = 1 (mod 3) and n != 1.

  a(n) = ((2n-1)^2+3)/6 if n = 2 (mod 3).

Conjectures from Colin Barker, Jun 05 2019: (Start)

G.f.: x^2*(2 + 4*x + 3*x^2 + x^3 + x^5 + x^6 + x^7 - x^8) / ((1 - x)^3*(1 + x + x^2)^2).

a(n) = a(n-1) + 2*a(n-3) - 2*a(n-4) - a(n-6) + a(n-7) for n>9.

(End)

EXAMPLE

For n = 7 one of many a(7) = 29 solutions:

  *********

  *.O.....*

  *.OOOOOO*

  *.O....O*

  *.O.....*

  *.O.OOO.*

  *.OOO.O.*

  *.O...O.*

  *********

PROG

(Perl)

sub a {

     # Conjectured: This program is valid for any m X n board size

     my ($m, $n) = @_;

     $n = $m if !defined $n;

     ($m, $n) = ($n, $m) if $m > $n;

     # So now $m <= $n

     # This program is certain to be valid for all $m <= 24

     if ($m >= 4) {

         return $m*(2*$n-1)/3 if $m % 3 == 0;

         return $n*(2*$m-1)/3 if $n % 3 == 0;

         return ((2*$m-1)*(2*$n-1)+5)/6 if $m % 3 == 1 && $n % 3 == 1;

         return ((2*$m-1)*(2*$n-1)+3)/6; # if $m % 3 == 2 || $n % 3 == 2

     }

     return 2*$n if $m == 3;

     return $n == 3 ? 4 : $n if $m == 2;

     return $n >= 3 ? 2 : $n-1 if $m == 1;

     die "Bad call";

}

CROSSREFS

A071619 is a trivial upper bound for this sequence.

Sequence in context: A327895 A096378 A217001 * A079023 A327967 A189760

Adjacent sequences:  A320663 A320664 A320665 * A320667 A320668 A320669

KEYWORD

nonn,more

AUTHOR

Ton Hospel, Oct 28 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 03:22 EST 2020. Contains 338865 sequences. (Running on oeis4.)