login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A217001 Numbers k such that (k^2 + k + 2)/4 is prime. 1
2, 6, 9, 14, 22, 25, 30, 33, 41, 46, 49, 54, 57, 62, 86, 89, 97, 113, 118, 121, 126, 134, 142, 161, 177, 198, 201, 209, 214, 217, 222, 225, 238, 254, 265, 273, 278, 286, 294, 302, 305, 310, 313, 321, 329, 337, 342, 350, 366, 393, 414, 417, 425, 441, 449, 470 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

(A000217(a(n))+1)/2 is prime.

LINKS

Daniel Starodubtsev, Table of n, a(n) for n = 1..10000

EXAMPLE

For k=2, (k^2 + k + 2)/4 = 2 is prime. Then 2 is in the sequence.

For k=6, (k^2 + k + 2)/4 = 11 is prime. Then 6 is in the sequence.

For k=5, (k^2 + k + 2)/4 = 8 is not prime. Then 5 is not in the sequence.

MAPLE

tn := unapply(n*(n+1)/2, n):

f := unapply((t+1)/2, t):

T := []: N := []: P := []:

for k from 0 to 5000 do

  t:=tn(k):

  p := f(k):

  if p = floor(p) then

    p = floor(p):

    if isprime(p) then

      T := [op(T), t]:

      N := [op(N), k]:

      P := [op(P), p]:

    end if:

end if:

  if nops(T) = 50 then

    break:

  end if:

end do:

N := N;

MATHEMATICA

Select[Range[500], PrimeQ[(#^2 + # + 2)/4] &] (* T. D. Noe, Sep 24 2012 *)

PROG

(PARI) is(n)=isprime((n^2+n+2)/4) \\ Charles R Greathouse IV, Jun 13 2017

CROSSREFS

Cf. A000040.

Sequence in context: A327895 A096378 A342426 * A320666 A079023 A327967

Adjacent sequences:  A216998 A216999 A217000 * A217002 A217003 A217004

KEYWORD

nonn,easy

AUTHOR

César Eliud Lozada, Sep 22 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 24 08:30 EST 2022. Contains 350534 sequences. (Running on oeis4.)