OFFSET
0,3
COMMENTS
Also the number of non-isomorphic multiset partitions of weight n in which each vertex appears an odd number of times.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..50
EXAMPLE
Non-isomorphic representatives of the a(1) = 1 through a(4) = 12 multiset partitions with all parts of odd size:
{{1}} {{1},{1}} {{1,1,1}} {{1},{1,1,1}}
{{1},{2}} {{1,2,2}} {{1},{1,2,2}}
{{1,2,3}} {{1},{2,2,2}}
{{1},{1},{1}} {{1},{2,3,3}}
{{1},{2},{2}} {{1},{2,3,4}}
{{1},{2},{3}} {{2},{1,2,2}}
{{3},{1,2,3}}
{{1},{1},{1},{1}}
{{1},{1},{2},{2}}
{{1},{2},{2},{2}}
{{1},{2},{3},{3}}
{{1},{2},{3},{4}}
PROG
(PARI) \\ See links in A339645 for combinatorial species functions.
seq(n)={my(A=symGroupSeries(n)); NumUnlabeledObjsSeq(sCartProd(sExp(A), sExp((A-subst(A, x, -x))/2)))} \\ Andrew Howroyd, Jan 17 2023
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
J(q, t, k, y)={1/prod(j=1, #q, my(s=q[j], g=gcd(s, t)); (1 + O(x*x^k) - y^(s/g)*x^(s*t/g))^g)}
K(q, t, k) = Vec(J(q, t, k, 1)-J(q, t, k, -1), -k)/2
a(n)={my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(x*Ser(sum(t=1, n, K(q, t, n)/t))), n)); s/n!} \\ Andrew Howroyd, Jan 17 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 18 2018
EXTENSIONS
Terms a(11) and beyond from Andrew Howroyd, Jan 16 2023
STATUS
approved