login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291518
Number of permutations s_1,s_2,...,s_n of 1,2,...,n with s_n = n (if n>0) and such that for all j=1,2,...,n, Sum_{i=1..j} s_i divides Sum_{i=1..j} s_i^3.
2
1, 1, 1, 2, 6, 12, 30, 78, 186, 414, 912, 2064, 4338, 9798, 20106, 40974, 80196, 158322, 309414, 615558, 1212402, 2417136, 4776654, 9497508, 18726708, 37056150, 72946116, 144230640, 284660874, 564451830, 1118803818, 2224792026, 4420041210, 8791590168
OFFSET
0,4
FORMULA
a(n+1) = A291445(n).
A291445(n) >= a(n) + A291519(n) for n > 1.
EXAMPLE
1 divides 1^3,
1 + 2 divides 1^3 + 2^3,
1 + 2 + 3 divides 1^3 + 2^3 + 3^3,
1 + 2 + 3 + 4 divides 1^3 + 2^3 + 3^3 + 4^3,
1 + 2 + 3 + 4 + 5 divides 1^3 + 2^3 + 3^3 + 4^3 + 5^3.
So [1, 2, 3, 4, 5] satisfies all the conditions.
-------------------------------------------------------
a(1) = 1: [[1]];
a(2) = 1: [[1, 2]];
a(3) = 2: [[1, 2, 3], [2, 1, 3]];
a(4) = 6: [[1, 2, 3, 4], [1, 3, 2, 4], [2, 1, 3, 4], [2, 3, 1, 4], [3, 1, 2, 4], [3, 2, 1, 4]];
a(5) = 12: [[1, 2, 3, 4, 5], [1, 3, 2, 4, 5], [2, 1, 3, 4, 5], [2, 3, 1, 4, 5], [2, 3, 4, 1, 5], [2, 4, 3, 1, 5], [3, 1, 2, 4, 5], [3, 2, 1, 4, 5], [3, 2, 4, 1, 5], [3, 4, 2, 1, 5], [4, 2, 3, 1, 5], [4, 3, 2, 1, 5]].
CROSSREFS
Sequence in context: A335711 A032177 A095349 * A291445 A320664 A022916
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 25 2017
STATUS
approved