login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291519
Number of permutations s_1,s_2,...,s_n of 1,2,...,n with s_n = 1 (if n>0) and such that for all j=1,2,...,n, Sum_{i=1..j} s_i divides Sum_{i=1..j} s_i^3.
3
1, 1, 1, 2, 6, 18, 42, 90, 228, 498, 1152, 2274, 5460, 10308, 20868, 39222, 78126, 151092, 306144, 596796, 1204734, 2359518, 4720854, 9229200, 18329442, 35889966, 71284524, 140430234, 279790956, 554351988, 1105988208, 2195249184, 4371548958, 8665192968
OFFSET
0,4
COMMENTS
Appears to approximately double (for n > 1) for each successive n. - Chai Wah Wu, Aug 26 2017
LINKS
FORMULA
A291445(n) >= a(n) + A291518(n) for n > 1.
EXAMPLE
5 divides 5^3,
5 + 4 divides 5^3 + 4^3,
5 + 4 + 3 divides 5^3 + 4^3 + 3^3,
5 + 4 + 3 + 2 divides 5^3 + 4^3 + 3^3 + 2^3,
5 + 4 + 3 + 2 + 1 divides 5^3 + 4^3 + 3^3 + 2^3 + 1^3.
So [5, 4, 3, 2, 1] satisfies all the conditions.
-------------------------------------------------------
a(1) = 1: [[1]];
a(2) = 1: [[2, 1]];
a(3) = 2: [[2, 3, 1], [3, 2, 1]];
a(4) = 6: [[2, 3, 4, 1], [2, 4, 3, 1], [3, 2, 4, 1], [3, 4, 2, 1], [4, 2, 3, 1], [4, 3, 2, 1]];
a(5) = 18: [[2, 3, 4, 5, 1], [2, 3, 5, 4, 1], [2, 4, 3, 5, 1], [2, 5, 3, 4, 1], [3, 2, 4, 5, 1], [3, 2, 5, 4, 1], [3, 4, 2, 5, 1], [3, 4, 5, 2, 1], [3, 5, 2, 4, 1], [3, 5, 4, 2, 1], [4, 2, 3, 5, 1], [4, 3, 2, 5, 1], [4, 3, 5, 2, 1], [4, 5, 3, 2, 1], [5, 2, 3, 4, 1], [5, 3, 2, 4, 1], [5, 3, 4, 2, 1], [5, 4, 3, 2, 1]].
CROSSREFS
Sequence in context: A364672 A014741 A016059 * A027556 A195584 A225316
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 25 2017
EXTENSIONS
a(0), a(14)-a(33) from Alois P. Heinz, Aug 25 2017
STATUS
approved