The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A291522 The arithmetic function uhat(n,4,7). 0
 -20, -20, -20, -20, -20, -20, -20, -20, -20, -20, -22, -24, -26, -28, -30, -32, -34, -36, -38, -40, -42, -44, -46, -48, -50, -52, -54, -56, -58, -60, -62, -64, -66, -68, -70, -72, -74, -76, -78, -80, -82, -84, -86, -88, -90, -92, -94, -96, -98, -100, -102, -104, -106, -108, -110, -112, -114, -116, -118, -120, -122, -124, -126, -128, -130, -132, -134, -136, -138, -140 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Bela Bajnok, Additive Combinatorics: A Menu of Research Problems, arXiv:1705.07444 [math.NT], May 2017. See Table in Section 1.6.4. MATHEMATICA delta[r_, k_, d_] := If[r < k, (k - r)*r - (d - 1), If[k < r && r < d, (d - r)*(r - k) - (d - 1), If[k == r && r == d, d - 1, 0]]] uhat[n_, m_, h_] := (dx = Divisors[n]; dmin = n; For[i = 1, i ≤ Length[dx], i++, d = dx[[i]]; k = m - d*Ceiling[m/d] + d; r = h - d*Ceiling[h/d] + d; If[h ≤ Min[k, d - 1], dmin = Min[dmin, n, (h*Ceiling[m/d] - h + 1)*d, h*m - h*h + 1], dmin = Min[dmin, n, h*m - h*h + 1 - delta[r, k, d]]]]; dmin) Table[uhat[n, 4, 7], {n, 1, 70}] CROSSREFS Cf. A289435, A289436, A289437, A289438, A289439, A289440, A289441. Sequence in context: A278831 A081245 A010859 * A303642 A278830 A040381 Adjacent sequences:  A291519 A291520 A291521 * A291523 A291524 A291525 KEYWORD sign AUTHOR Robert Price, Aug 25 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 28 14:26 EST 2022. Contains 350656 sequences. (Running on oeis4.)