login
A289436
The arithmetic function v_1(n,4).
113
1, 1, 2, 1, 3, 2, 4, 3, 5, 3, 6, 3, 7, 5, 8, 4, 9, 5, 10, 7, 11, 6, 12, 6, 13, 9, 14, 7, 15, 8, 16, 11, 17, 10, 18, 9, 19, 13, 20, 10, 21, 11, 22, 15, 23, 12, 24, 14, 25, 17, 26, 13, 27, 15, 28, 19, 29, 15, 30, 15, 31, 21, 32, 16, 33, 17, 34, 23, 35
OFFSET
2,3
REFERENCES
J. Butterworth, Examining the arithmetic function v_g(n,h). Research Papers in Mathematics, B. Bajnok, ed., Gettysburg College, Vol. 8 (2008).
LINKS
Bela Bajnok, Additive Combinatorics: A Menu of Research Problems, arXiv:1705.07444 [math.NT], May 2017. See Table in Section 1.6.1.
MAPLE
a:= n-> n*max(seq((floor((d-2)/4)+1)/d, d=numtheory[divisors](n))):
seq(a(n), n=2..100); # Alois P. Heinz, Jul 07 2017
MATHEMATICA
a[n_]:=n*Max[Table[(Floor[(d - 2)/4] + 1)/d, {d, Divisors[n]}]]; Table[a[n], {n, 2, 100}] (* Indranil Ghosh, Jul 08 2017 *)
PROG
(PARI)
v(g, n, h)={my(t=0); fordiv(n, d, t=max(t, ((d-1-gcd(d, g))\h + 1)*(n/d))); t}
a(n)=v(1, n, 4); \\ Andrew Howroyd, Jul 07 2017
(Python)
from sympy import divisors, floor
def a(n): return int(n*max(int(floor((d - 2)/4) + 1)/d for d in divisors(n)))
print([a(n) for n in range(2, 101)]) # Indranil Ghosh, Jul 08 2017
CROSSREFS
Sequence in context: A257909 A289439 A213633 * A282745 A097140 A028242
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 07 2017
EXTENSIONS
a(41)-a(70) from Andrew Howroyd, Jul 07 2017
STATUS
approved