login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289438
The arithmetic function v_4(n,4).
113
0, 1, 0, 1, 2, 2, 1, 3, 2, 3, 4, 3, 4, 5, 3, 4, 6, 5, 4, 7, 6, 6, 8, 6, 6, 9, 8, 7, 10, 8, 7, 11, 8, 10, 12, 9, 10, 13, 9, 10, 14, 11, 12, 15, 12, 12, 16, 14, 12, 17, 12, 13, 18, 15, 16, 19, 14, 15, 20, 15, 16, 21, 15, 16, 22, 17, 16, 23, 20
OFFSET
2,5
REFERENCES
J. Butterworth, Examining the arithmetic function v_g(n,h). Research Papers in Mathematics, B. Bajnok, ed., Gettysburg College, Vol. 8 (2008).
LINKS
Bela Bajnok, Additive Combinatorics: A Menu of Research Problems, arXiv:1705.07444 [math.NT], May 2017. See Table in Section 1.6.1.
MAPLE
a:= n-> n*max(seq((floor((d-1-igcd(d, 4))/4)+1)
/d, d=numtheory[divisors](n))):
seq(a(n), n=2..100); # Alois P. Heinz, Jul 07 2017
MATHEMATICA
a[n_]:=n*Max[Table[(Floor[(d - 1 - GCD[d, 4])/4] + 1)/d, {d, Divisors[n]}]]; Table[a[n], {n, 2, 100}] (* Indranil Ghosh, Jul 08 2017 *)
PROG
(PARI)
v(g, n, h)={my(t=0); fordiv(n, d, t=max(t, ((d-1-gcd(d, g))\h + 1)*(n/d))); t}
a(n)=v(4, n, 4); \\ Andrew Howroyd, Jul 07 2017
(Python)
from sympy import divisors, floor, gcd
def a(n): return n*max([(floor((d - 1 - gcd(d, 4))/4) + 1)/d for d in divisors(n)])
print([a(n) for n in range(2, 101)]) # Indranil Ghosh, Jul 08 2017
CROSSREFS
Sequence in context: A280716 A319444 A071285 * A008678 A159803 A308934
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 07 2017
EXTENSIONS
a(41)-a(70) from Andrew Howroyd, Jul 07 2017
STATUS
approved