login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280716
Expansion of Product_{k>=2} (1 + mu(2*k-1)^2*x^(2*k-1)), where mu() is the Moebius function (A008683).
0
1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 1, 3, 2, 3, 3, 3, 4, 4, 3, 5, 4, 5, 6, 4, 8, 6, 8, 8, 9, 11, 10, 11, 14, 13, 14, 15, 16, 19, 16, 20, 22, 22, 23, 26, 29, 30, 31, 35, 39, 38, 43, 44, 49, 50, 52, 58, 59, 64, 67, 71, 77, 82, 85, 93, 97, 107, 108, 117, 125, 131, 138, 143, 157, 162, 168, 179, 194, 199
OFFSET
0,16
COMMENTS
Number of partitions of n into distinct odd squarefree parts > 1.
LINKS
Joerg Arndt, Matters Computational (The Fxtbook), section 16.4.3 "Partitions into square-free parts", pp.351-352
Eric Weisstein's World of Mathematics, Squarefree
FORMULA
G.f.: Product_{k>=2} (1 + mu(2*k-1)^2*x^(2*k-1)).
EXAMPLE
a(18) = 3 because we have [15, 3], [13, 5] and [11, 7].
MATHEMATICA
nmax = 84; CoefficientList[Series[Product[1 + MoebiusMu[2 k - 1]^2 x^(2 k - 1), {k, 2, nmax}], {x, 0, nmax}], x]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 07 2017
STATUS
approved