login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319444
Total number of factors in a factorization of n into Eisenstein primes.
8
0, 1, 2, 2, 1, 3, 2, 3, 4, 2, 1, 4, 2, 3, 3, 4, 1, 5, 2, 3, 4, 2, 1, 5, 2, 3, 6, 4, 1, 4, 2, 5, 3, 2, 3, 6, 2, 3, 4, 4, 1, 5, 2, 3, 5, 2, 1, 6, 4, 3, 3, 4, 1, 7, 2, 5, 4, 2, 1, 5, 2, 3, 6, 6, 3, 4, 2, 3, 3, 4, 1, 7, 2, 3, 4, 4, 3, 5, 2, 5, 8, 2, 1, 6, 2, 3, 3
OFFSET
1,3
COMMENTS
Equivalent of Omega (A001222) in the ring of Eisenstein integers.
z is an Eisenstein prime iff z has prime norm or z is the product of a rational prime congruent to 2 modulo 3 and an Eisenstein unit (one of +-1 or (+-1 +- sqrt(3)*i)/2).
The smallest k with a(k) = n is A038754(n).
LINKS
FORMULA
Completely additive with a(p) = 2 if p = 3 or p == 1 (mod 3) and a(p) = 1 if p == 2 (mod 3).
EXAMPLE
Let w = (1 + sqrt(3)*i)/2, w' = (1 - sqrt(3)*i)/2.
a(54) = a(2*3^3) = 1*a(2) + 3*a(3) = 1*1 + 3*2 = 7. Over the Gaussian integers, 54 is factored as -2*(1 + w)^6.
a(63) = a(3^2*7) = 2*a(3) + 1*a(7) = 2*2 + 1*2 = 6. Over the Gaussian integers, 63 is factored as w'^2*(1 + w)^4*(2 + w)*(2 + w)'.
a(1006655265000) = a(2^3*3^2*5^4*7^5*11^3) = 3*a(2) + 2*a(3) + 4*a(5) + 5*a(7) + 3*a(11) = 3*1 + 2*2 + 4*1 + 5*2 + 3*1 = 24. Over the Gaussian integers, 1006655265000 is factored as w'^2*(1 + w)^4*2^3*(2 + w)*(2 + w')*5^4*11^3.
MATHEMATICA
f[p_, e_] := e * If[Mod[p, 3] == 2, 1, 2]; eisBigomega[1] = 0; eisBigomega[n_] := Plus @@ f @@@ FactorInteger[n]; Array[eisBigomega, 100] (* Amiram Eldar, Feb 10 2020 *)
PROG
(PARI) a(n)=my(f=factor(n)); sum(i=1, #f~, if(f[i, 1]%3==2, 1, 2)*f[i, 2])
CROSSREFS
Cf. A038754.
Equivalent of arithmetic functions in the ring of Eisenstein integers (the corresponding functions in the ring of integers are in the parentheses): A319442 ("d", A000005), A319449 ("sigma", A000203), A319445 ("phi", A000010), A319446 ("psi", A002322), A319443 ("omega", A001221), this sequence ("Omega", A001222), A319448 ("mu", A008683).
Equivalent in the ring of Gaussian integers: A078458.
Sequence in context: A333867 A030717 A280716 * A071285 A289438 A008678
KEYWORD
nonn
AUTHOR
Jianing Song, Sep 19 2018
STATUS
approved