login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319448
Moebius function mu(n) defined for the Eisenstein integers.
8
1, -1, 0, 0, -1, 0, 1, 0, 0, 1, -1, 0, 1, -1, 0, 0, -1, 0, 1, 0, 0, 1, -1, 0, 0, -1, 0, 0, -1, 0, 1, 0, 0, 1, -1, 0, 1, -1, 0, 0, -1, 0, 1, 0, 0, 1, -1, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 1, -1, 0, 1, -1, 0, 0, -1, 0, 1, 0, 0, 1, -1, 0, 1, -1, 0, 0, -1, 0, 1, 0, 0
OFFSET
1,1
COMMENTS
Just like the original Moebius function over the integers, a(n) = 0 if n has a squared Eisenstein prime factor, otherwise (-1)^t if n is a product of an Eisenstein unit and t distinct Eisenstein prime factors.
Let w = (1 + sqrt(3)*i)/2, w' = (1 - sqrt(3)*i)/2. a(n) = 0 for n divisible by 3 since 3 = w'*(1 + w)^2 contains a squared factor. For rational primes p == 1 (mod 3), p is always factored as (x + y*w)(x + y*w'), x + y*w and x + y*w' are not associated so a(p) = (-1)*(-1) = 1.
LINKS
FORMULA
a(n) = 0 if n is divisible by 3 or has a square prime factor, otherwise Product_{p divides n} (3 - 2*(p mod 3)) where the product is taken over the primes.
Multiplicative with a(p^e) = 0 if p = 3 or e > 1, a(p) = 1 if p == 1 (mod 3) and -1 if p == 2 (mod 3).
For squarefree n, a(n) = Legendre symbol (n, 3) = Kronecker symbol (-3, n) = A102283(n).
EXAMPLE
Let w = (1 + sqrt(3)*i)/2, w' = (1 - sqrt(3)*i)/2.
a(14) = -1 because 14 is factored as 2*(2 + w)*(2 + w') with three distinct Eisenstein prime factors.
a(55) = (-1)*(-1) = 1 because 55 = 5*11 where 5 and 11 are congruent to 2 mod 3 (thus being Eisenstein primes).
MATHEMATICA
f[p_, e_] := If[p == 3 || e > 1, 0, Switch[Mod[p, 3], 1, 1, 2, -1]]; eisMu[1] = 1; eisMu[n_] := Times @@ f @@@ FactorInteger[n]; Array[eisMu, 100] (* Amiram Eldar, Feb 10 2020 *)
PROG
(PARI)
a(n)=
{
my(r=1, f=factor(n));
for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
if(p==3||e>=2, r=0);
if(Mod(p, 3)==2&e==1, r*=-1);
);
return(r);
}
CROSSREFS
Cf. A102283.
Equivalent of arithmetic functions in the ring of Eisenstein integers (the corresponding functions in the ring of integers are in the parentheses): A319442 ("d", A000005), A319449 ("sigma", A000203), A319445 ("phi", A000010), A319446 ("psi", A002322), A319443 ("omega", A001221), A319444 ("Omega", A001222), this sequence ("mu", A008683).
Equivalent in the ring of Gaussian integers: A318608.
Sequence in context: A341754 A074711 A004585 * A365428 A156277 A359377
KEYWORD
sign,mult
AUTHOR
Jianing Song, Sep 19 2018
STATUS
approved