login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365428
Dirichlet inverse of A102283.
6
1, 1, 0, 0, 1, 0, -1, 0, 0, 1, 1, 0, -1, -1, 0, 0, 1, 0, -1, 0, 0, 1, 1, 0, 0, -1, 0, 0, 1, 0, -1, 0, 0, 1, -1, 0, -1, -1, 0, 0, 1, 0, -1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, -1, -1, 0, 0, -1, 0, -1, 0, 0, -1, 1, 0, -1, -1, 0, 0, -1, 0, -1, 0, 0, 1, 1, 0, 1, -1, 0, 0, 1, 0, 1, 0, 0, 1, -1, 0, -1, 0, 0, 0, 1, 0, -1, 0, 0
OFFSET
1
COMMENTS
Multiplicative because A102283 is.
LINKS
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A102283(n/d) * a(d).
Multiplicative with a(p) = -Legendre(-3, p), and a(p^e) = 0 for e >= 2. - Amiram Eldar, Sep 16 2023
MATHEMATICA
f[p_, e_] := If[e == 1, -JacobiSymbol[-3, p], 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2023 *)
PROG
(PARI) A365428(n) = { my(f=factor(n)); prod(k=1, #f~, if(1<f[k, 2], 0, -kronecker(-3, f[k, 1]))); }; \\ (After Amiram Eldar's multiplicative formula).
(PARI)
A102283(n) = ([0, 1, -1][n%3 + 1]);
memoA365428 = Map();
A365428(n) = if(1==n, 1, my(v); if(mapisdefined(memoA365428, n, &v), v, v = -sumdiv(n, d, if(d<n, A102283(n/d)*A365428(d), 0)); mapput(memoA365428, n, v); (v)));
CROSSREFS
Cf. A102283, A134323, A156277, A359377 (absolute values).
Sequence in context: A074711 A004585 A319448 * A156277 A359377 A353663
KEYWORD
sign,mult
AUTHOR
Antti Karttunen, Sep 16 2023
STATUS
approved