login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134323
a(n) = Legendre(-3, prime(n)).
10
-1, 0, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1
OFFSET
1,1
COMMENTS
Value of lowest trit of prime(n) in balanced ternary representation (A059095) (original definition).
For p = prime(n) != 3, a(n) = +1 if p is of the form 3*k + 1, and -1 if the p is of the form 3*k - 1. - Joerg Arndt, Sep 16 2014
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
-1 if the n-th prime is 2 or == 5 mod 6, +1 if the n-th prime is == 1 mod 6, and 0 if it is 3.
a(n) = (1 - 0^A039701(n)) * (-1)^(A039701(n)+1).
a(n) != 0 for n != 2;
a(A049084(A003627(n))) = -1; a(A049084(A002476(n))) = +1.
EXAMPLE
For n=20, prime(20) = 71, and we verify that -3 is not a quadratic residue modulo 71, hence a(20) = -1. Also, we see that the balanced ternary representation row A059095(71) = {1, 0, -1, 0, -1} which ends in -1.
For n=21, prime(21) = 73, and we see that x^2 = -3 mod 73 has solutions like x = 17, 56, hence a(21) = 1. Also, the balanced ternary representation row A059095(73) = {1, 0 -1, 0, 1} which ends in 1.
MATHEMATICA
A134323[n_] := (r = Mod[Prime[n], 6]; If[r == 1, 1, -1]); A134323[1] = -1; A134323[2] = 0; Table[A134323[n], {n, 1, 102}] (* Jean-François Alcover, Nov 07 2011, after Bill McEachen *)
JacobiSymbol[-3, Prime[Range[100]]] (* Alonso del Arte, Aug 02 2017 *)
PROG
(Haskell)
a134323 n = (1 - 0 ^ m) * (-1) ^ (m + 1) where m = a000040 n `mod` 3
-- Reinhard Zumkeller, Sep 16 2014
(PARI) apply(p->kronecker(-3, p), primes(100)) \\ Charles R Greathouse IV, Aug 14 2017
CROSSREFS
Cf. A000040, A039701, A049084, A112632 (partial sums), A059095 (balanced ternary)
Cf. A091177 (indices of -1's), A091178 (indices of +1's), A003627, A002476.
Other moduli: A070750, A257834.
Sequence in context: A131695 A324113 A105812 * A060576 A261012 A019590
KEYWORD
sign,easy
AUTHOR
Reinhard Zumkeller, Oct 21 2007
EXTENSIONS
Wording of definition changed by N. J. A. Sloane, Jun 21 2015
Name simplified by Alonso del Arte, Aug 02 2017
STATUS
approved