login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Legendre(-3, prime(n)).
10

%I #44 Mar 04 2022 11:16:35

%S -1,0,-1,1,-1,1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,1,1,-1,-1,1,-1,1,

%T -1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,1,-1,1,1,1,-1,1,-1,-1,1,-1,

%U -1,-1,-1,1,1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,1,1,1,-1,-1,1,-1,1,-1,1,-1,1,1,-1,-1,1,-1,1,-1,-1,1,-1,1,-1,-1,-1,1,1,1,-1

%N a(n) = Legendre(-3, prime(n)).

%C Value of lowest trit of prime(n) in balanced ternary representation (A059095) (original definition).

%C For p = prime(n) != 3, a(n) = +1 if p is of the form 3*k + 1, and -1 if the p is of the form 3*k - 1. - _Joerg Arndt_, Sep 16 2014

%H Charles R Greathouse IV, <a href="/A134323/b134323.txt">Table of n, a(n) for n = 1..10000</a>

%F -1 if the n-th prime is 2 or == 5 mod 6, +1 if the n-th prime is == 1 mod 6, and 0 if it is 3.

%F a(n) = (1 - 0^A039701(n)) * (-1)^(A039701(n)+1).

%F a(n) != 0 for n != 2;

%F a(A049084(A003627(n))) = -1; a(A049084(A002476(n))) = +1.

%e For n=20, prime(20) = 71, and we verify that -3 is not a quadratic residue modulo 71, hence a(20) = -1. Also, we see that the balanced ternary representation row A059095(71) = {1, 0, -1, 0, -1} which ends in -1.

%e For n=21, prime(21) = 73, and we see that x^2 = -3 mod 73 has solutions like x = 17, 56, hence a(21) = 1. Also, the balanced ternary representation row A059095(73) = {1, 0 -1, 0, 1} which ends in 1.

%t A134323[n_] := (r = Mod[Prime[n], 6]; If[r == 1, 1, -1]); A134323[1] = -1; A134323[2] = 0; Table[A134323[n], {n, 1, 102}] (* _Jean-François Alcover_, Nov 07 2011, after _Bill McEachen_ *)

%t JacobiSymbol[-3, Prime[Range[100]]] (* _Alonso del Arte_, Aug 02 2017 *)

%o (Haskell)

%o a134323 n = (1 - 0 ^ m) * (-1) ^ (m + 1) where m = a000040 n `mod` 3

%o -- _Reinhard Zumkeller_, Sep 16 2014

%o (PARI) apply(p->kronecker(-3,p), primes(100)) \\ _Charles R Greathouse IV_, Aug 14 2017

%Y Cf. A000040, A039701, A049084, A112632 (partial sums), A059095 (balanced ternary)

%Y Cf. A091177 (indices of -1's), A091178 (indices of +1's), A003627, A002476.

%Y Other moduli: A070750, A257834.

%K sign,easy

%O 1,1

%A _Reinhard Zumkeller_, Oct 21 2007

%E Wording of definition changed by _N. J. A. Sloane_, Jun 21 2015

%E Name simplified by _Alonso del Arte_, Aug 02 2017