login
A289437
The arithmetic function v_2(n,4).
113
0, 1, 1, 1, 2, 2, 2, 3, 2, 3, 4, 3, 4, 5, 4, 4, 6, 5, 5, 7, 6, 6, 8, 6, 6, 9, 8, 7, 10, 8, 8, 11, 8, 10, 12, 9, 10, 13, 10, 10, 14, 11, 12, 15, 12, 12, 16, 14, 12, 17, 13, 13, 18, 15, 16, 19, 14, 15, 20, 15, 16, 21, 16, 16, 22, 17, 17, 23, 20
OFFSET
2,5
REFERENCES
J. Butterworth, Examining the arithmetic function v_g(n,h). Research Papers in Mathematics, B. Bajnok, ed., Gettysburg College, Vol. 8 (2008).
LINKS
Bela Bajnok, Additive Combinatorics: A Menu of Research Problems, arXiv:1705.07444 [math.NT], May 2017. See Table in Section 1.6.1.
MAPLE
a:= n-> n*max(seq((floor((d-1-igcd(d, 2))/4)+1)
/d, d=numtheory[divisors](n))):
seq(a(n), n=2..100); # Alois P. Heinz, Jul 07 2017
MATHEMATICA
a[n_]:=n*Max[Table[(Floor[(d - 1 - GCD[d, 2])/4] + 1)/d, {d, Divisors[n]}]]; Table[a[n], {n, 2, 100}] (* Indranil Ghosh, Jul 08 2017 *)
PROG
(PARI)
v(g, n, h)={my(t=0); fordiv(n, d, t=max(t, ((d-1-gcd(d, g))\h + 1)*(n/d))); t}
a(n)=v(2, n, 4); \\ Andrew Howroyd, Jul 07 2017
(Python)
from sympy import divisors, floor, gcd
def a(n): return n*max([(floor((d - 1 - gcd(d, 2))/4) + 1)/d for d in divisors(n)])
print([a(n) for n in range(2, 101)]) # Indranil Ghosh, Jul 08 2017
CROSSREFS
Sequence in context: A219354 A026903 A253893 * A348369 A068324 A167505
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 07 2017
EXTENSIONS
a(41)-a(70) from Andrew Howroyd, Jul 07 2017
STATUS
approved