login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225316
a(n) = practical(2^n) where practical(n) is the n-th practical number (A005153).
1
1, 2, 6, 18, 42, 108, 270, 594, 1350, 3008, 6678, 14620, 31724, 67712, 143792, 305856, 651126, 1377918, 2908308, 6120672, 12848472, 26854938, 55963260, 116389896, 241526012, 500796416, 1037764968, 2147851712, 4440630150, 9176799780, 18946755918, 39092425578, 80569691202
OFFSET
0,2
COMMENTS
a(n) is analogous to A033844.
FORMULA
a(n) = A005153(A000079(n)). - Michel Marcus, Nov 12 2015
EXAMPLE
a(7) = A005153(128) = 594.
MATHEMATICA
PracticalQ[n_] := Module[{f, p, e, prod=1, ok=True}, If[n<1||(n>1&&OddQ[n]), False, If[n==1, True, f=FactorInteger[n]; {p, e}=Transpose[f]; Do[If[p[[i]]>1+DivisorSigma[1, prod], ok=False; Break[]]; prod=prod*p[[i]]^e[[i]], {i, Length[p]}]; ok]]]; nextpractical[n1_]:=(m1=n1+1; While[!PracticalQ[m1], m1++]; m1); Table[Nest[nextpractical, 0, 2^n], {n, 0, 20}] (* using T. D. Noe's program A005153 *)
PROG
(Python)
from math import prod
from itertools import count
from sympy import factorint
def A225316(n):
if n:
c, k = 1, 1<<n
for m in count(2, 2):
f = list(factorint(m).items())
if all(f[i][0] <= 1+prod((f[j][0]**(f[j][1]+1)-1)//(f[j][0]-1) for j in range(i)) for i in range(len(f))):
c += 1
if c == k:
return m
else:
return 1 # Chai Wah Wu, Aug 04 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Frank M Jackson, May 05 2013
EXTENSIONS
a(26)-a(27) from Chai Wah Wu, Aug 07 2023
a(28)-a(29) from David A. Corneth, Aug 07 2023
More terms from David A. Corneth, Aug 14 2023
STATUS
approved