OFFSET
1,2
COMMENTS
a(n) are the values m such that the expression (2^(m+1) - 2)/(m^2 + m) is an integer.
It appears that a(n) == 2 (mod 4) for n > 1. - Robert Israel, Jul 04 2017
LINKS
Robert Israel, Table of n, a(n) for n = 1..300 (first 66 terms from Melvin Peralta)
EXAMPLE
MAPLE
select(t -> 2 &^ t - 1 mod t*(t+1)/2 = 0, [$1..10^6]); # Robert Israel, Jul 04 2017
MATHEMATICA
Join[{1}, Select[Range[10^6], PowerMod[2, #+1, #^2+#] == 2 &]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Melvin Peralta, May 11 2016
EXTENSIONS
Mild editing. Wolfdieter Lang, May 31 2016
STATUS
approved