login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272931
a(n) = 2^(n+1)*cos(n*arctan(sqrt(15))).
3
2, 1, -7, -11, 17, 61, -7, -251, -223, 781, 1673, -1451, -8143, -2339, 30233, 39589, -81343, -239699, 85673, 1044469, 701777, -3476099, -6283207, 7621189, 32754017, 2269261, -128746807, -137823851, 377163377, 928458781, -580194727, -4294029851, -1973250943
OFFSET
0,1
COMMENTS
For n >= 1, |a(n)| is the unique odd positive solution y to 4^(n+1) = 15*x^2 + y^2. The value of x is |A106853(n-1)|. - Jianing Song, Jan 22 2019
FORMULA
Let a(x) = x/2 - i*sqrt(15)*x/2 and b(x) = x/2 + i*sqrt(15)*x/2, then:
a(n) = a(1)^n + b(1)^n.
a(n) = n! [x^n] exp(a(x)) + exp(b(x)).
a(n) = [x^n] (2 - x)/(4*x^2 - x + 1).
a(n) = Sum_{k=0..floor(n/2)} (-4)^k*n*(n - k - 1)!/(k!*(n - 2*k)!) for n >= 1.
For n >= 1, 15*a(n)^2 + A106853(n-1)^2 = 4^(n+1). - Jianing Song, Jan 22 2019
a(n) = a(n-1) - 4*a(n-2) for n>1. - Colin Barker, Jan 22 2019
a(n) = 2*A106853(n) - A106853(n-1). - R. J. Mathar, Aug 19 2022
MAPLE
seq(simplify(((1-I*sqrt(15))^n + (1+I*sqrt(15))^n)/2^n), n=0..32);
MATHEMATICA
LinearRecurrence[{1, -4}, {2, 1}, 33]
PROG
(Sage)
[lucas_number2(i, 1, 4) for i in range(33)]
(PARI) Vec((2 - x) / (1 - x + 4*x^2) + O(x^40)) \\ Colin Barker, Jan 22 2019
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Peter Luschny, May 11 2016
STATUS
approved