OFFSET
0,1
COMMENTS
For n >= 1, |a(n)| is the unique odd positive solution y to 4^(n+1) = 15*x^2 + y^2. The value of x is |A106853(n-1)|. - Jianing Song, Jan 22 2019
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
Index entries for linear recurrences with constant coefficients, signature (1,-4).
FORMULA
Let a(x) = x/2 - i*sqrt(15)*x/2 and b(x) = x/2 + i*sqrt(15)*x/2, then:
a(n) = a(1)^n + b(1)^n.
a(n) = n! [x^n] exp(a(x)) + exp(b(x)).
a(n) = [x^n] (2 - x)/(4*x^2 - x + 1).
a(n) = Sum_{k=0..floor(n/2)} (-4)^k*n*(n - k - 1)!/(k!*(n - 2*k)!) for n >= 1.
For n >= 1, 15*a(n)^2 + A106853(n-1)^2 = 4^(n+1). - Jianing Song, Jan 22 2019
a(n) = a(n-1) - 4*a(n-2) for n>1. - Colin Barker, Jan 22 2019
MAPLE
seq(simplify(((1-I*sqrt(15))^n + (1+I*sqrt(15))^n)/2^n), n=0..32);
MATHEMATICA
LinearRecurrence[{1, -4}, {2, 1}, 33]
PROG
(Sage)
[lucas_number2(i, 1, 4) for i in range(33)]
(PARI) Vec((2 - x) / (1 - x + 4*x^2) + O(x^40)) \\ Colin Barker, Jan 22 2019
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Peter Luschny, May 11 2016
STATUS
approved