login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100245
Triangle read by rows: T(n,k) is the number of k-matchings in the P_3 X P_n lattice graph.
2
1, 1, 2, 1, 7, 11, 3, 1, 12, 44, 56, 18, 1, 17, 102, 267, 302, 123, 11, 1, 22, 185, 758, 1597, 1670, 757, 106, 1, 27, 293, 1654, 5256, 9503, 9401, 4603, 908, 41, 1, 32, 426, 3080, 13254, 35004, 56456, 53588, 27688, 6716, 540, 1, 37, 584, 5161, 28191, 99183
OFFSET
0,3
COMMENTS
Row n contains 1+floor(3n/2) terms. Row sums yield A033506.
REFERENCES
H. Hosoya and A. Motoyama, An effective algorithm for obtaining polynomials for dimer statistics. Application of operator technique on the topological index to two- and three-dimensional rectangular and torus lattices, J. Math. Physics 26 (1985) 157-167 (eq. (26) and Table V).
FORMULA
G.f.=(1+tz-t^3*z^2)(1-2tz-t^3*z^2)/[1-(1+3t)z-t(1+t)(2+5t)z^2-t^2*(1+2t)(1-t)z^3+t^4*(2+3t+5t^2)z^4-t^6*(1-t)z^5-t^9*z^6]. The row generating polynomials A[n] satisfy A[n]=(1+3t)A[n-1]+t(2+7t+5t^2)A[n-2]+t^2*(1+t-2t^2)A[n-3]-t^4*(2+3t+5t^2)A[n-4]+t^6*(1-t)A[n-5]+t^9*A[n-6].
EXAMPLE
T(2,2)=11 because in the P_3 X P_ 2 lattice graph with vertex set {O(0,0),A(1,0),B(1,1),C(1,2),D(0,2),E(0,1)} and edge set {OA,EB,DC,OE,ED,AB,BC} we have the following eleven 2-matchings: {OA,EB},{OA,DC},{EB,DC},{OA,ED},{OA,BC},{DC,OE},{DC,AB},{OE,AB},{OE,BC},{ED,AB} and {ED,BC}.
Triangle starts:
1;
1,2;
1,7,11,3;
1,12,44,56,18;
1,17,102,267,302,123,11;
MAPLE
G:=(1+t*z-t^3*z^2)*(1-2*t*z-t^3*z^2)/(1-(1+3*t)*z-t*(1+t)*(2+5*t)*z^2-t^2*(1+2*t)*(1-t)*z^3+t^4*(2+3*t+5*t^2)*z^4-t^6*(1-t)*z^5-t^9*z^6): Gser:=simplify(series(G, z=0, 11)): P[0]:=1: for n from 1 to 8 do P[n]:=coeff(Gser, z^n) od:for n from 0 to 8 do seq(coeff(t*P[n], t^k), k=1..floor(3*n/2)+1) od; # yields sequence in triangular form
CROSSREFS
Cf. A033506, A001835 (bisection diagonal).
Sequence in context: A032039 A203991 A075118 * A275320 A272931 A095137
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Dec 28 2004
EXTENSIONS
Keyword tabl changed to tabf by Michel Marcus, Apr 09 2013
STATUS
approved