login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002249 a(n) = a(n-1) - 2*a(n-2) with a(0) = 2, a(1) = 1. 15
2, 1, -3, -5, 1, 11, 9, -13, -31, -5, 57, 67, -47, -181, -87, 275, 449, -101, -999, -797, 1201, 2795, 393, -5197, -5983, 4411, 16377, 7555, -25199, -40309, 10089, 90707, 70529, -110885, -251943, -30173, 473713, 534059, -413367, -1481485 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

4*2^n = A002249(n)^2 + 7*A001607(n)^2. See A077020, A077021.

Among presented initial elements of the sequence a(n), the maximal increasing or decreasing subsequences have length either 3 or 4. - Roman Witula, Aug 21 2012

This is the Lucas Sequence V_n(P, Q) = V_n(1, 2). U_n(1, 2) = A107920(n). - Raphie Frank, Dec 25 2013

LINKS

T. D. Noe, Table of n, a(n) for n=0..500

Wikipedia, Lucas Sequence.

Index entries for linear recurrences with constant coefficients, signature (1,-2).

FORMULA

G.f.: (2-x)/(1-x+2x^2). - Michael Somos, Oct 18 2002

a(n) = trace(A^n) for the square matrix A=[1, -2;1, 0]. - Paul Barry, Sep 05 2003

a(n) = 2^((n+2)/2)cos(-n*acot(sqrt(7)/7)). - Paul Barry, Sep 06 2003

a(n) = (-1)^n*(2*A110512(n)-A001607(n)) = ((1+i*sqrt(7))/2)^n + ((1-i*sqrt(7))/2)^n. - Roman Witula, Aug 21 2012

G.f.: G(0), where G(k)= 1 + 1/(1 - x*(7*k+1)/(x*(7*k+8) + 2/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 03 2013

(a(A060728(n) - 2))^2 = (A107920(2*(A060728(n)) - 4))^2 = 2^(A060728(n)) - 7 = A227078(n), the Ramanujan-Nagell squares. - Raphie Frank, Dec 25 2013

a(n) = [x^n] ( (1 + x + sqrt(1 + 2*x - 7*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015

a(n) = (A107920(n+1) + 2*A107920(n+2) - A107920(n+3))/2. - Raphie Frank, Nov 28 2015

V_n(P,Q) = a(k*n) = ((a(k) + sqrt(-7))/2)^n + ((a(k) - sqrt(-7))/2)^n for k is in {1, 2, 3, 5, 13} = (A060728(n) - 2), P is in (1, -3, -5, 11, -181} = a(k), and Q is in {2, 4, 8, 32, 8192} = 2^k = (2*A076046(n) + 2) = (A227078(n) - 7)/4. P^2 - 4*Q = -7. - Raphie Frank, Dec 05 2015

EXAMPLE

We have a(2)-a(7) = a(5)-a(4) = a(6)+a(4) = a(11)-a(10) = a(12)+a(10)=10. Further the following relations: ((1+i*sqrt(7))/2)^4 + ((1-i*sqrt(7))/2)^4 = 1 and ((1+i*sqrt(7))/2)^8 + ((1-i*sqrt(7))/2)^8 = -31. - Roman Witula, Aug 21 2012

G.f. = 2 + x - 3*x^2 - 5*x^3 + x^4 + 11*x^5 + 9*x^6 - 13*x^7 - 31*x^8 + ...

V_n(1, 2) = a(1*n) = ((a(1) + sqrt(-7))/2)^n + ((a(1) - sqrt(-7))/2)^n; a(1) = 1

V_n(-3, 4) = a(2*n) = ((a(2) + sqrt(-7))/2)^n + ((a(2) - sqrt(-7))/2)^n; a(2) = -3

V_n(-5, 8) = a(3*n) = ((a(3) + sqrt(-7))/2)^n + ((a(3) - sqrt(-7))/2)^n; a(3) = -5

V_n(11, 32) = a(5*n) = ((a(5) + sqrt(-7))/2)^n + ((a(5) - sqrt(-7))/2)^n; a(5) = 11

V_n(-181, 8192) = a(13*n) = ((a(13) + sqrt(-7))/2)^n + ((a(13) - sqrt(-7))/2)^n; a(13) = -181

- Raphie Frank, Dec 05 2015

MAPLE

A002249 := proc(n) option remember; >if n = 1 then 1 elif n = 2 then -3 else A002249(n-1>)-2*A002249(n-2); fi; end;

MATHEMATICA

LinearRecurrence[{1, -2}, {2, 1}, 50] (* Roman Witula, Aug 21 2012 *)

a[ n_] := 2^(n/2) ChebyshevT[ n, 8^(-1/2)] 2; (* Michael Somos, Jun 02 2014 *)

a[ n_] := 2^Min[0, n] SeriesCoefficient[ (2 - x) / (1 - x + 2 x^2), {x, 0, Abs @ n}]; (* Michael Somos, Jun 02 2014 *)

PROG

(PARI) {a(n) = if( n<0, 2^n * a(-n), polsym(2 - x + x^2, n)[n+1])}; /* Michael Somos, Jun 02 2014 */

(PARI) {a(n) = 2 * real( ((1 + quadgen(-28)) / 2)^n )}; /* Michael Somos, Jun 02 2014 */

(Sage) [lucas_number2(n, 1, 2) for n in xrange(0, 40)] # Zerinvary Lajos, Apr 30 2009

(MAGMA) I:=[2, 1]; [n le 2 select I[n] else Self(n-1)-2*Self(n-2): n in [1..50]]; // Vincenzo Librandi, Nov 29 2015

(PARI) x='x+O('x^100); Vec((2-x)/(1-x+2*x^2)) \\ Altug Alkan, Dec 04 2015

CROSSREFS

Cf. A014551, A107920, A060728.

Sequence in context: A058168 A058169 A178074 * A157127 A066748 A106583

Adjacent sequences:  A002246 A002247 A002248 * A002250 A002251 A002252

KEYWORD

sign,easy

AUTHOR

N. J. A. Sloane, Iwan Duursma

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 3 20:40 EST 2016. Contains 278745 sequences.